(转)漫画:什么是动态规划?

主页君小提示:图文有点长,慢慢看

————————————

题目:

有一座高度是10级台阶的楼梯,从下往上走,每跨一步只能向上1级或者2级台阶。要求用程序来求出一共有多少种走法。

比如,每次走1级台阶,一共走10步,这是其中一种走法。我们可以简写成 1,1,1,1,1,1,1,1,1,1。

再比如,每次走2级台阶,一共走5步,这是另一种走法。我们可以简写成 2,2,2,2,2。

当然,除此之外,还有很多很多种走法。

————————————

第一种情况:

第二种情况:

把思路画出来,就是这样子:

F(1) = 1;

F(2) = 2;

F(n) = F(n-1)+F(n-2)(n>=3)

方法一:递归求解

由于代码比较简单,这里就不做过多解释了。

如图所示,相同的颜色代表了方法被传入相同的参数。

方法二:备忘录算法

在以上代码中,集合map是一个备忘录。当每次需要计算F(N)的时候,会首先从map中寻找匹配元素。如果map中存在,就直接返回结果,如果map中不存在,就计算出结果,存入备忘录中。

方法三:动态规划求解

程序从 i=3 开始迭代,一直到 i=n 结束。每一次迭代,都会计算出多一级台阶的走法数量。迭代过程中只需保留两个临时变量a和b,分别代表了上一次和上上次迭代的结果。 为了便于理解,我引入了temp变量。temp代表了当前迭代的结果值。

题目二: 国王和金矿

有一个国家发现了5座金矿,每座金矿的黄金储量不同,需要参与挖掘的工人数也不同。参与挖矿工人的总数是10人。每座金矿要么全挖,要么不挖,不能派出一半人挖取一半金矿。要求用程序求解出,要想得到尽可能多的黄金,应该选择挖取哪几座金矿?

方法一:排列组合

每一座金矿都有挖与不挖两种选择,如果有N座金矿,排列组合起来就有2^N种选择。对所有可能性做遍历,排除那些使用工人数超过10的选择,在剩下的选择里找出获得金币数最多的选择。

代码比较简单就不展示了,时间复杂度也很明显,就是O(2^N)。

F(n,w) = 0 (n<=1, w

F(n,w) = g[0] (n==1, w>=p[0]);

F(n,w) = F(n-1,w) (n>1, w

F(n,w) = max(F(n-1,w), F(n-1,w-p[n-1])+g[n-1]) (n>1, w>=p[n-1])

其中第三条是补充上去的,原因不难理解。

方法二:简单递归

把状态转移方程式翻译成递归程序,递归的结束的条件就是方程式当中的边界。因为每个状态有两个最优子结构,所以递归的执行流程类似于一颗高度为N的二叉树。

方法的时间复杂度是O(2^N)。

方法三:备忘录算法

在简单递归的基础上增加一个HashMap备忘录,用来存储中间结果。HashMap的Key是一个包含金矿数N和工人数W的对象,Value是最优选择获得的黄金数。

方法的时间复杂度和空间复杂度相同,都等同于备忘录中不同Key的数量。

方法四:动态规划

方法利用两层迭代,来逐步推导出最终结果。在外层的每一次迭代,也就是对表格每一行的迭代过程中,都会保留上一行的结果数组 preResults,并循环计算当前行的结果数组results。

方法的时间复杂度是 O(n * w),空间复杂度是(w)。需要注意的是,当金矿只有5座的时候,动态规划的性能优势还没有体现出来。当金矿有10座,甚至更多的时候,动态规划就明显具备了优势。

觉得本文有帮助?请分享给更多人

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容