sklearn-TfidfVectorizer

TF-IDF概述

TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。
前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。在上一节中,我们讲到几乎所有文本都会出现的"to"其词频虽然高,但是重要性却应该比词频低的"China"和“Travel”要低。我们的IDF就是来帮助我们来反应这个词的重要性的,进而修正仅仅用词频表示的词特征值。
概括来讲, IDF反应了一个词在所有文本中出现的频率,如果一个词在很多的文本中出现,那么它的IDF值应该低,比如上文中的“to”。而反过来如果一个词在比较少的文本中出现,那么它的IDF值应该高。比如一些专业的名词如“Machine Learning”。这样的词IDF值应该高。一个极端的情况,如果一个词在所有的文本中都出现,那么它的IDF值应该为0。
上面是从定性上说明的IDF的作用,那么如何对一个词的IDF进行定量分析呢?这里直接给出一个词


1.jpg

其中,N代表语料库中文本的总数,而N(x)代表语料库中包含词x的文本总数。为什么IDF的基本公式应该是是上面这样的而不是像N/N(x)这样的形式呢?这就涉及到信息论相关的一些知识了。感兴趣的朋友建议阅读吴军博士的《数学之美》第11章。

上面的IDF公式已经可以使用了,但是在一些特殊的情况会有一些小问题,比如某一个生僻词在语料库中没有,这样我们的分母为0, IDF没有意义了。所以常用的IDF我们需要做一些平滑,使语料库中没有出现的词也可以得到一个合适的IDF值。平滑的方法有很多种,最常见的IDF平滑后的公式之一为:


2.jpg
3.jpg

tf-idf 计算公式

"tf-idf 计算公式"
tf-idf(x)= (log(N+1/(N(x)+1))+1) ~~IDF(x)~~ *(WordCount/totalWord) 

TfidfVectorizer 中文处理方法

第一种:CountVectorizer+TfidfTransformer的组合

from sklearn.feature_extraction.text import TfidfTransformer  
from sklearn.feature_extraction.text import CountVectorizer  
 
corpus=["I come to China to travel",
    "This is a car polupar in China",          
    "I love tea and Apple ",   
    "The work is to write some papers in science"]
 
vectorizer=CountVectorizer()
 
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))  
print tfidf

第二种

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
re = tfidf2.fit_transform(corpus)
print re

corpus =  ["I have a pen.",   "I have an apple."]

输出的各个文本各个词的TF-IDF值和第一种的输出完全相同。大家可以自己去验证一下。
由于第二种方法比较的简洁,因此在实际应用中推荐使用,一步到位完成向量化,TF-IDF与标准化。

例1 :遍历某一类文本下的词语权重

import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
 
if __name__ == "__main__":
    corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果,词之间以空格隔开
        "他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
        "小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
        "我 爱 北京 天安门"]#第四类文本的切词结果
    vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
    transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
    tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
    word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
    weight=tfidf.toarray()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i类文本中的tf-idf权重
    for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for遍历某一类文本下的词语权重
        print u"-------这里输出第",i,u"类文本的词语tf-idf权重------"
        for j in range(len(word)):
            print word[j],weight[i][j]

元素a[i][j]表示j词在i类文本中的tf-idf权重

打印结果:
-------这里输出第 0 类文本的词语tf-idf权重------ #该类对应的原文本是:"我来到北京清华大学"
中国 0.0
北京 0.52640543361
大厦 0.0
天安门 0.0
小明 0.0
来到 0.52640543361
杭研 0.0
毕业 0.0
清华大学 0.66767854461
硕士 0.0
科学院 0.0
网易 0.0
-------这里输出第 1 类文本的词语tf-idf权重------ #该类对应的原文本是: "他来到了网易杭研大厦"
中国 0.0
北京 0.0
大厦 0.525472749264
天安门 0.0
小明 0.0
来到 0.414288751166
杭研 0.525472749264
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.525472749264
-------这里输出第 2 类文本的词语tf-idf权重------ #该类对应的原文本是: "小明硕士毕业于中国科学院“
中国 0.4472135955
北京 0.0
大厦 0.0
天安门 0.0
小明 0.4472135955
来到 0.0
杭研 0.0
毕业 0.4472135955
清华大学 0.0
硕士 0.4472135955
科学院 0.4472135955
网易 0.0
-------这里输出第 3 类文本的词语tf-idf权重------ #该类对应的原文本是: "我爱北京天安门"
中国 0.0
北京 0.61913029649
大厦 0.0
天安门 0.78528827571
小明 0.0
来到 0.0
杭研 0.0
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.0

例2 原始文本转化为tf-idf的特征矩阵

TfidfVectorizer可以把原始文本转化为tf-idf的特征矩阵,从而为后续的文本相似度计算,主题模型,文本搜索排序等一系列应用奠定基础。基本应用如:

#coding=utf-8
from sklearn.feature_extraction.text import TfidfVectorizer
document = ["I have a pen.",
            "I have an apple."]
tfidf_model = TfidfVectorizer().fit(document)
sparse_result = tfidf_model.transform(document)     # 得到tf-idf矩阵,稀疏矩阵表示法
print(sparse_result)
# (0, 3)    0.814802474667
# (0, 2)    0.579738671538
# (1, 2)    0.449436416524
# (1, 1)    0.631667201738
# (1, 0)    0.631667201738
print(sparse_result.todense())                     # 转化为更直观的一般矩阵
# [[ 0.          0.          0.57973867  0.81480247]
#  [ 0.6316672   0.6316672   0.44943642  0.        ]]
print(tfidf_model.vocabulary_)                      # 词语与列的对应关系
# {'have': 2, 'pen': 3, 'an': 0, 'apple': 1}

但是要把它运用到中文上还需要一些特别的处理,故写此文分享我的经验。

第一步:分词
中文不比英文,词语之间有着空格的自然分割,所以我们首先要进行分词处理,再把它转化为与上面的document类似的格式。这里采用著名的中文分词库jieba进行分词:

    import jieba
    text = """我是一条天狗呀!
    我把月来吞了,
    我把日来吞了,
    我把一切的星球来吞了,
    我把全宇宙来吞了。
    我便是我了!"""
    sentences = text.split()
    sent_words = [list(jieba.cut(sent0)) for sent0 in sentences]
    document = [" ".join(sent0) for sent0 in sent_words]
    print(document)
# ['我 是 一条 天狗 呀 !', '我 把 月 来 吞 了 ,', '我 把 日来 吞 了 ,', '我 把 一切 的 星球 来 吞 了 ,', '我 把 全宇宙 来 吞 了 。', '我 便是 我 了 !']

PS:语料来自郭沫若《天狗》。另外,由于分词工具的不完善,也会有一些错误,比如这边错误地把"日来"分到了一起。

第二步:建模
理论上,现在得到的document的格式已经可以直接拿来训练了。让我们跑一下模型试试。

    tfidf_model = TfidfVectorizer().fit(document)
    print(tfidf_model.vocabulary_)
    # {'一条': 1, '天狗': 4, '日来': 5, '一切': 0, '星球': 6, '全宇宙': 3, '便是': 2}
    sparse_result = tfidf_model.transform(document)
    print(sparse_result)
    # (0, 4)    0.707106781187
    # (0, 1)    0.707106781187
    # (2, 5)    1.0
    # (3, 6)    0.707106781187
    # (3, 0)    0.707106781187
    # (4, 3)    1.0
    # (5, 2)    1.0

没有错误,但有一个小问题,就是单字的词语,如“我”、“吞”、“呀”等词语在我们的词汇表中怎么都不见了呢?为了处理一些特殊的问题,让我们深入其中的一些参数。

第三步:参数

查了一些资料以后,发现单字的问题是token_pattern这个参数搞的鬼。它的默认值只匹配长度≥2的单词,就像其实开头的例子中的'I'也被忽略了一样,一般来说,长度为1的单词在英文中一般是无足轻重的,但在中文里,就可能有一些很重要的单字词,所以修改如下:
    tfidf_model2 = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b").fit(document)
    print(tfidf_model2.vocabulary_)
    # {'我': 8, '是': 12, '一条': 1, '天狗': 7, '呀': 6, '把': 9, '月': 13, '来': 14, '吞': 5, '了': 2, '日来': 10, '一切': 0, '的': 15, '星球': 11, '全宇宙': 4, '便是': 3}

token_pattern这个参数使用正则表达式来分词,其默认参数为r"(?u)\b\w\w+\b",其中的两个\w决定了其匹配长度至少为2的单词,所以这边减到1个。对这个参数进行更多修改,可以满足其他要求,比如这里依然没有得到标点符号,在此不详解了。
当然有些时候我们还是要过滤掉一些无意义的词,下面有些别的参数也可以帮助我们实现这一目的:
1.max_df/min_df: [0.0, 1.0]内浮点数或正整数, 默认值=1.0
当设置为浮点数时,过滤出现在超过max_df/低于min_df比例的句子中的词语;正整数时,则是超过max_df句句子。
这样就可以帮助我们过滤掉出现太多的无意义词语,如下面的"我"就被过滤(虽然这里“我”的排比在文学上是很重要的)。
# 过滤出现在超过60%的句子中的词语
tfidf_model3 = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b", max_df=0.6).fit(document)
print(tfidf_model3.vocabulary_)
# {'是': 8, '一条': 1, '天狗': 5, '呀': 4, '月': 9, '来': 10, '日来': 6, '一切': 0, '的': 11, '星球': 7, '全宇宙': 3, '便是': 2}
2.stop_words: list类型
直接过滤指定的停用词。

  tfidf_model4 = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b", max_df=0.6, stop_words=["是", "的"]).fit(document)
    print(tfidf_model4.vocabulary_)
    # {'一条': 1, '天狗': 5, '呀': 4, '月': 8, '来': 9, '日来': 6, '一切': 0, '星球': 7, '全宇宙': 3, '便是': 2}

3.vocabulary: dict类型
只使用特定的词汇,其形式与上面看到的tfidf_model4.vocabulary_相同,也是指定对应关系。这一参数的使用有时能帮助我们专注于一些词语,比如我对本诗中表达感情的一些特定词语(甚至标点符号)感兴趣,就可以设定这一参数,只考虑他们:

tfidf_model5 = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b",vocabulary={"我":0, "呀":1,"!":2}).fit(document)
print(tfidf_model5.vocabulary_)
# {'我': 0, '呀': 1, '!': 2}
print(tfidf_model5.transform(document).todense())
# [[ 0.40572238  0.91399636  0.        ]
#  [ 1.          0.          0.        ]
#  [ 1.          0.          0.        ]
#  [ 1.          0.          0.        ]
#  [ 1.          0.          0.        ]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容