问题描述
给你一个下标从 0
开始、严格递增 的整数数组 nums
和一个正整数 diff
。如果满足下述全部条件,则三元组 (i, j, k)
就是一个 算术三元组 :
-
i < j < k
, -
nums[j] - nums[i] == diff
且 -
nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
示例
输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。
输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。
解题思路
核心思路:哈希
我们可以将数存到Set
中,然后遍历数组枚举第一个整数,从Set
中寻找满足条件的第二、三个整数是否存在。
代码示例(JAVA)
class Solution {
public int arithmeticTriplets(int[] nums, int diff) {
Set<Integer> set = new HashSet<>();
for (int num : nums) {
set.add(num);
}
int res = 0;
for (int num : nums) {
if (set.contains(num + diff) && set.contains(num + 2 * diff)) {
res++;
}
}
return res;
}
}
算法复杂度:O(n)
注:这个在力扣中并不能击败100%,可以考虑建一个长数组来代替Set
。
class Solution {
public int arithmeticTriplets(int[] nums, int diff) {
int length = nums.length, max = nums[length - 1];
int[] arr = new int[max + 1];
for (int i = 0; i < length; i++) {
arr[nums[i]] = 1;
}
int res = 0;
for (int i = 0; i < length - 2; i++) {
if (nums[i] + 2 * diff <= max
&& arr[nums[i] + diff] == 1 && arr[nums[i] + 2 * diff] == 1) {
res++;
}
}
return res;
}
}