R语言可视化(二十九):聚类树图绘制

29. 聚类树图绘制


清除当前环境中的变量

rm(list=ls())

设置工作目录

setwd("C:/Users/Dell/Desktop/R_Plots/29dendrogram/")

使用dendrogram函数绘制聚类树图

# 查看内置示例数据
head(USArrests)
##            Murder Assault UrbanPop Rape
## Alabama      13.2     236       58 21.2
## Alaska       10.0     263       48 44.5
## Arizona       8.1     294       80 31.0
## Arkansas      8.8     190       50 19.5
## California    9.0     276       91 40.6
## Colorado      7.9     204       78 38.7

# 计算距离矩阵,默认method = "euclidean"计算欧氏距离
dists <- dist(USArrests,method = "euclidean") 
head(dists)
## [1]  37.17701  63.00833  46.92814  55.52477  41.93256 128.20694

# 进行层次聚类,method = "average"选择UPGMA聚类算法
hc <- hclust(dists, method = "ave")
hc
## 
## Call:
## hclust(d = dists, method = "ave")
## 
## Cluster method   : average 
## Distance         : euclidean 
## Number of objects: 50

# 将hclust对象转换为dendrogram对象
dend1 <- as.dendrogram(hc)
dend1
## 'dendrogram' with 2 branches and 50 members total, at height 152.314

# 绘制聚类树图,默认type = "rectangle"
plot(dend1, type = "rectangle", 
     ylab="Height",
     main="Cluster Dendrogram")
image.png
## "triangle" type and show inner nodes:
plot(dend1, 
     nodePar = list(pch = c(1,NA), cex = 1.2, lab.cex = 0.9),#设置节点的形状,大小和标签字体大小
     type = "triangle", center = TRUE)
image.png
plot(dend1, 
     edgePar = list(col = c("red","blue"), lty = 1:2),#设置节点边的颜色和线型
     dLeaf = 2, edge.root = TRUE)
image.png
plot(dend1, 
     nodePar = list(pch = 17:16, cex = 1.2:0.8, col = 2:3),
     horiz = TRUE)#水平放置聚类树
image.png
nP <- list(col = 3:2, cex = c(2.0, 0.8), pch =  21:22,
           bg =  c("light blue", "pink"),
           lab.cex = 0.8, lab.col = "tomato")
plot(dend1, 
     nodePar= nP, 
     edgePar = list(col = "gray", lwd = 2), 
     horiz = TRUE)
image.png
# plot dendrogram with some cuts
dend2 <- cut(dend1, h = 70)
dend2
## $upper
## 'dendrogram' with 2 branches and 4 members total, at height 152.314 
## 
## $lower
## $lower[[1]]
## 'dendrogram' with 2 branches and 2 members total, at height 38.52791 
## 
## $lower[[2]]
## 'dendrogram' with 2 branches and 14 members total, at height 44.28392 
## 
## $lower[[3]]
## 'dendrogram' with 2 branches and 14 members total, at height 44.83793 
## 
## $lower[[4]]
## 'dendrogram' with 2 branches and 20 members total, at height 54.74683

plot(dend2$upper, main = "Upper tree of cut at h=70")
image.png
##  dend2$lower is *NOT* a dendrogram, but a list of .. :
plot(dend2$lower[[1]], main = "First branch of lower tree with cut at h=70")
image.png
## "inner" and "leaf" edges in different type & color :
plot(dend2$lower[[2]], 
     nodePar = list(col = 1),   # non empty list
     edgePar = list(lty = 1:2, col = 2:1), 
     edge.root = TRUE)
image.png
plot(dend2$lower[[3]], 
     nodePar = list(col = 4), 
     horiz = TRUE, type = "tr")
image.png

使用ggdendro包绘制聚类树图

# 安装并加载所需的R包
#install.packages('ggdendro')
library(ggdendro)
library(ggplot2)

# 层次聚类
hc <- hclust(dist(USArrests), "ave")
hc
## 
## Call:
## hclust(d = dist(USArrests), method = "ave")
## 
## Cluster method   : average 
## Distance         : euclidean 
## Number of objects: 50

# Demonstrate plotting directly from object class hclust
# 使用ggdendrogram函数绘制聚类树
ggdendrogram(hc)
image.png
# 旋转90度
ggdendrogram(hc, rotate = TRUE)
image.png
# demonstrate converting hclust to dendro using dendro_data first
hcdata <- dendro_data(hc, type = "triangle")
hcdata
## $segments
##            x          y      xend      yend
## 1  17.994141 152.313999  4.765625 77.605024
## 2   4.765625  77.605024  1.500000 38.527912
## 3   1.500000  38.527912  1.000000  0.000000
## 4   1.500000  38.527912  2.000000  0.000000
## 5   4.765625  77.605024  8.031250 44.283922
## 6   8.031250  44.283922  3.875000 28.012211
## 7   3.875000  28.012211  3.000000  0.000000
## 8   3.875000  28.012211  4.750000 15.453120
## 9   4.750000  15.453120  4.000000  0.000000
## 10  4.750000  15.453120  5.500000 13.896043
## 11  5.500000  13.896043  5.000000  0.000000
## 12  5.500000  13.896043  6.000000  0.000000
## 13  8.031250  44.283922 12.187500 39.394633
## 14 12.187500  39.394633  9.625000 26.363428
## 15  9.625000  26.363428  7.750000 16.891499
## 16  7.750000  16.891499  7.000000  0.000000
## 17  7.750000  16.891499  8.500000 15.454449
## 18  8.500000  15.454449  8.000000  0.000000
## 19  8.500000  15.454449  9.000000  0.000000
## 20  9.625000  26.363428 11.500000 18.417331
## 21 11.500000  18.417331 10.500000  6.236986
## 22 10.500000   6.236986 10.000000  0.000000
## 23 10.500000   6.236986 11.000000  0.000000
## 24 11.500000  18.417331 12.500000 13.297368
## 25 12.500000  13.297368 12.000000  0.000000
## 26 12.500000  13.297368 13.000000  0.000000
## 27 12.187500  39.394633 14.750000 28.095803
## 28 14.750000  28.095803 14.000000  0.000000
## 29 14.750000  28.095803 15.500000 21.167192
## 30 15.500000  21.167192 15.000000  0.000000
## 31 15.500000  21.167192 16.000000  0.000000
## 32 17.994141 152.313999 31.222656 89.232093
## 33 31.222656  89.232093 23.796875 44.837933
## 34 23.796875  44.837933 20.343750 26.713777
## 35 20.343750  26.713777 17.937500 16.425489
## 36 17.937500  16.425489 17.000000  0.000000
## 37 17.937500  16.425489 18.875000 12.878100
## 38 18.875000  12.878100 18.000000  0.000000
## 39 18.875000  12.878100 19.750000 10.736739
## 40 19.750000  10.736739 19.000000  0.000000
## 41 19.750000  10.736739 20.500000  7.355270
## 42 20.500000   7.355270 20.000000  0.000000
## 43 20.500000   7.355270 21.000000  0.000000
## 44 20.343750  26.713777 22.750000 22.595978
## 45 22.750000  22.595978 22.000000  0.000000
## 46 22.750000  22.595978 23.500000 11.456439
## 47 23.500000  11.456439 23.000000  0.000000
## 48 23.500000  11.456439 24.000000  0.000000
## 49 23.796875  44.837933 27.250000 29.054195
## 50 27.250000  29.054195 25.750000 20.198479
## 51 25.750000  20.198479 25.000000  0.000000
## 52 25.750000  20.198479 26.500000 12.614278
## 53 26.500000  12.614278 26.000000  0.000000
## 54 26.500000  12.614278 27.000000  0.000000
## 55 27.250000  29.054195 28.750000 23.972143
## 56 28.750000  23.972143 28.000000  0.000000
## 57 28.750000  23.972143 29.500000 14.501034
## 58 29.500000  14.501034 29.000000  0.000000
## 59 29.500000  14.501034 30.000000  0.000000
## 60 31.222656  89.232093 38.648438 54.746831
## 61 38.648438  54.746831 34.437500 20.598507
## 62 34.437500  20.598507 31.875000 15.026107
## 63 31.875000  15.026107 31.000000  0.000000
## 64 31.875000  15.026107 32.750000 12.438692
## 65 32.750000  12.438692 32.000000  0.000000
## 66 32.750000  12.438692 33.500000  3.834058
## 67 33.500000   3.834058 33.000000  0.000000
## 68 33.500000   3.834058 34.000000  0.000000
## 69 34.437500  20.598507 37.000000 15.122897
## 70 37.000000  15.122897 35.500000  6.637771
## 71 35.500000   6.637771 35.000000  0.000000
## 72 35.500000   6.637771 36.000000  0.000000
## 73 37.000000  15.122897 38.500000 13.352260
## 74 38.500000  13.352260 37.500000  3.929377
## 75 37.500000   3.929377 37.000000  0.000000
## 76 37.500000   3.929377 38.000000  0.000000
## 77 38.500000  13.352260 39.500000  8.027453
## 78 39.500000   8.027453 39.000000  0.000000
## 79 39.500000   8.027453 40.000000  0.000000
## 80 38.648438  54.746831 42.859375 41.094765
## 81 42.859375  41.094765 41.000000  0.000000
## 82 42.859375  41.094765 44.718750 33.117815
## 83 44.718750  33.117815 42.750000 10.771175
## 84 42.750000  10.771175 42.000000  0.000000
## 85 42.750000  10.771175 43.500000  8.537564
## 86 43.500000   8.537564 43.000000  0.000000
## 87 43.500000   8.537564 44.000000  0.000000
## 88 44.718750  33.117815 46.687500 27.779904
## 89 46.687500  27.779904 45.500000 13.044922
## 90 45.500000  13.044922 45.000000  0.000000
## 91 45.500000  13.044922 46.000000  0.000000
## 92 46.687500  27.779904 47.875000 18.993398
## 93 47.875000  18.993398 47.000000  0.000000
## 94 47.875000  18.993398 48.750000 10.184218
## 95 48.750000  10.184218 48.000000  0.000000
## 96 48.750000  10.184218 49.500000  2.291288
## 97 49.500000   2.291288 49.000000  0.000000
## 98 49.500000   2.291288 50.000000  0.000000
## 
## $labels
##     x y          label
## 1   1 0        Florida
## 2   2 0 North Carolina
## 3   3 0     California
## 4   4 0       Maryland
## 5   5 0        Arizona
## 6   6 0     New Mexico
## 7   7 0       Delaware
## 8   8 0        Alabama
## 9   9 0      Louisiana
## 10 10 0       Illinois
## 11 11 0       New York
## 12 12 0       Michigan
## 13 13 0         Nevada
## 14 14 0         Alaska
## 15 15 0    Mississippi
## 16 16 0 South Carolina
## 17 17 0     Washington
## 18 18 0         Oregon
## 19 19 0        Wyoming
## 20 20 0       Oklahoma
## 21 21 0       Virginia
## 22 22 0   Rhode Island
## 23 23 0  Massachusetts
## 24 24 0     New Jersey
## 25 25 0       Missouri
## 26 26 0       Arkansas
## 27 27 0      Tennessee
## 28 28 0        Georgia
## 29 29 0       Colorado
## 30 30 0          Texas
## 31 31 0          Idaho
## 32 32 0       Nebraska
## 33 33 0       Kentucky
## 34 34 0        Montana
## 35 35 0           Ohio
## 36 36 0           Utah
## 37 37 0        Indiana
## 38 38 0         Kansas
## 39 39 0    Connecticut
## 40 40 0   Pennsylvania
## 41 41 0         Hawaii
## 42 42 0  West Virginia
## 43 43 0          Maine
## 44 44 0   South Dakota
## 45 45 0   North Dakota
## 46 46 0        Vermont
## 47 47 0      Minnesota
## 48 48 0      Wisconsin
## 49 49 0           Iowa
## 50 50 0  New Hampshire
## 
## $leaf_labels
## NULL
## 
## $class
## [1] "hclust"
## 
## attr(,"class")
## [1] "dendro"

ggdendrogram(hcdata, rotate = TRUE) + 
        labs(title = "Dendrogram in ggplot2")
image.png

使用ggraph包绘制聚类树图

# 安装并加载所需的R包
#install.packages("ggraph")
library(ggraph)
## Warning: package 'ggraph' was built under R version 3.6.3
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(tidyverse)
## -- Attaching packages ------------------------------------- tidyverse 1.2.1 --
## √ tibble  2.1.3     √ purrr   0.3.2
## √ tidyr   1.1.2     √ dplyr   1.0.2
## √ readr   1.3.1     √ stringr 1.4.0
## √ tibble  2.1.3     √ forcats 0.4.0
## Warning: package 'tidyr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## -- Conflicts ---------------------------------------- tidyverse_conflicts() --
## x dplyr::as_data_frame() masks tibble::as_data_frame(), igraph::as_data_frame()
## x purrr::compose()       masks igraph::compose()
## x tidyr::crossing()      masks igraph::crossing()
## x dplyr::filter()        masks stats::filter()
## x dplyr::groups()        masks igraph::groups()
## x dplyr::lag()           masks stats::lag()
## x purrr::simplify()      masks igraph::simplify()
library(RColorBrewer)
theme_set(theme_void())
## Warning: New theme missing the following elements: axis.title.x,
## axis.title.x.top, axis.title.y, axis.title.y.right, axis.text.x,
## axis.text.x.top, axis.text.y, axis.text.y.right, axis.ticks, axis.line,
## axis.line.x, axis.line.y, legend.background, legend.margin, legend.spacing,
## legend.spacing.x, legend.spacing.y, legend.key, legend.key.height,
## legend.key.width, legend.text.align, legend.title.align, legend.direction,
## legend.justification, legend.box.margin, legend.box.background,
## legend.box.spacing, panel.background, panel.border, panel.spacing.x,
## panel.spacing.y, panel.grid, panel.grid.minor, plot.background,
## strip.background, strip.placement, strip.text.x, strip.text.y

# 构建示例数据
# data: edge list
d1 <- data.frame(from="origin", to=paste("group", seq(1,7), sep=""))
head(d1)
##     from     to
## 1 origin group1
## 2 origin group2
## 3 origin group3
## 4 origin group4
## 5 origin group5
## 6 origin group6

d2 <- data.frame(from=rep(d1$to, each=7), to=paste("subgroup", seq(1,49), sep="_"))
head(d2)
##     from         to
## 1 group1 subgroup_1
## 2 group1 subgroup_2
## 3 group1 subgroup_3
## 4 group1 subgroup_4
## 5 group1 subgroup_5
## 6 group1 subgroup_6

edges <- rbind(d1, d2)
edges
##      from          to
## 1  origin      group1
## 2  origin      group2
## 3  origin      group3
## 4  origin      group4
## 5  origin      group5
## 6  origin      group6
## 7  origin      group7
## 8  group1  subgroup_1
## 9  group1  subgroup_2
## 10 group1  subgroup_3
## 11 group1  subgroup_4
## 12 group1  subgroup_5
## 13 group1  subgroup_6
## 14 group1  subgroup_7
## 15 group2  subgroup_8
## 16 group2  subgroup_9
## 17 group2 subgroup_10
## 18 group2 subgroup_11
## 19 group2 subgroup_12
## 20 group2 subgroup_13
## 21 group2 subgroup_14
## 22 group3 subgroup_15
## 23 group3 subgroup_16
## 24 group3 subgroup_17
## 25 group3 subgroup_18
## 26 group3 subgroup_19
## 27 group3 subgroup_20
## 28 group3 subgroup_21
## 29 group4 subgroup_22
## 30 group4 subgroup_23
## 31 group4 subgroup_24
## 32 group4 subgroup_25
## 33 group4 subgroup_26
## 34 group4 subgroup_27
## 35 group4 subgroup_28
## 36 group5 subgroup_29
## 37 group5 subgroup_30
## 38 group5 subgroup_31
## 39 group5 subgroup_32
## 40 group5 subgroup_33
## 41 group5 subgroup_34
## 42 group5 subgroup_35
## 43 group6 subgroup_36
## 44 group6 subgroup_37
## 45 group6 subgroup_38
## 46 group6 subgroup_39
## 47 group6 subgroup_40
## 48 group6 subgroup_41
## 49 group6 subgroup_42
## 50 group7 subgroup_43
## 51 group7 subgroup_44
## 52 group7 subgroup_45
## 53 group7 subgroup_46
## 54 group7 subgroup_47
## 55 group7 subgroup_48
## 56 group7 subgroup_49

# We can add a second data frame with information for each node!
name <- unique(c(as.character(edges$from), as.character(edges$to)))
vertices <- data.frame(
        name=name,
        group=c( rep(NA,8) ,  rep( paste("group", seq(1,7), sep=""), each=7)),
        cluster=sample(letters[1:4], length(name), replace=T),
        value=sample(seq(10,30), length(name), replace=T)
)
head(vertices)
##     name group cluster value
## 1 origin  <NA>       d    18
## 2 group1  <NA>       c    17
## 3 group2  <NA>       c    15
## 4 group3  <NA>       b    23
## 5 group4  <NA>       b    28
## 6 group5  <NA>       d    30

# Create a graph object
mygraph <- graph_from_data_frame( edges, vertices=vertices)
mygraph
## IGRAPH f42fbd3 DN-- 57 56 -- 
## + attr: name (v/c), group (v/c), cluster (v/c), value (v/n)
## + edges from f42fbd3 (vertex names):
##  [1] origin->group1      origin->group2      origin->group3     
##  [4] origin->group4      origin->group5      origin->group6     
##  [7] origin->group7      group1->subgroup_1  group1->subgroup_2 
## [10] group1->subgroup_3  group1->subgroup_4  group1->subgroup_5 
## [13] group1->subgroup_6  group1->subgroup_7  group2->subgroup_8 
## [16] group2->subgroup_9  group2->subgroup_10 group2->subgroup_11
## [19] group2->subgroup_12 group2->subgroup_13 group2->subgroup_14
## [22] group3->subgroup_15 group3->subgroup_16 group3->subgroup_17
## + ... omitted several edges

# 使用ggraph函数绘制聚类树图
ggraph(mygraph, layout = 'dendrogram') + 
        geom_edge_diagonal() 
image.png
# 绘制圆形的聚类树
ggraph(mygraph, layout = 'dendrogram', circular = TRUE) + 
        geom_edge_diagonal()
image.png
# 添加节点的标签,形状和信息
ggraph(mygraph, layout = 'dendrogram') + 
        geom_edge_diagonal() +
        geom_node_text(aes( label=name, filter=leaf, color=group) , angle=90 , hjust=1, nudge_y=-0.1) +
        geom_node_point(aes(filter=leaf, size=value, color=group) , alpha=0.6) +
        ylim(-.6, NA) +
        theme(legend.position="none")
image.png
# 构建测试数据集
# create a data frame giving the hierarchical structure of your individuals
d1=data.frame(from="origin", to=paste("group", seq(1,10), sep=""))
d2=data.frame(from=rep(d1$to, each=10), to=paste("subgroup", seq(1,100), sep="_"))
edges=rbind(d1, d2)

# create a vertices data.frame. One line per object of our hierarchy
vertices = data.frame(
        name = unique(c(as.character(edges$from), as.character(edges$to))) , 
        value = runif(111)
) 
# Let's add a column with the group of each name. It will be useful later to color points
vertices$group = edges$from[ match( vertices$name, edges$to ) ]

#Let's add information concerning the label we are going to add: angle, horizontal adjustement and potential flip
#calculate the ANGLE of the labels
vertices$id=NA
myleaves=which(is.na( match(vertices$name, edges$from) ))
nleaves=length(myleaves)
vertices$id[ myleaves ] = seq(1:nleaves)
vertices$angle= 90 - 360 * vertices$id / nleaves

# calculate the alignment of labels: right or left
# If I am on the left part of the plot, my labels have currently an angle < -90
vertices$hjust<-ifelse( vertices$angle < -90, 1, 0)

# flip angle BY to make them readable
vertices$angle<-ifelse(vertices$angle < -90, vertices$angle+180, vertices$angle)

# 查看测试数据
head(edges)
##     from     to
## 1 origin group1
## 2 origin group2
## 3 origin group3
## 4 origin group4
## 5 origin group5
## 6 origin group6

head(vertices)
##     name      value  group id angle hjust
## 1 origin 0.47071871   <NA> NA    NA    NA
## 2 group1 0.35606308 origin NA    NA    NA
## 3 group2 0.73638466 origin NA    NA    NA
## 4 group3 0.35833810 origin NA    NA    NA
## 5 group4 0.09394485 origin NA    NA    NA
## 6 group5 0.34061367 origin NA    NA    NA

# Create a graph object
mygraph <- graph_from_data_frame( edges, vertices=vertices )

# Make the plot
ggraph(mygraph, layout = 'dendrogram', circular = TRUE) + 
        geom_edge_diagonal(colour="grey") + #设置节点边的颜色
        # 设置节点的标签,字体大小,文本注释信息
        geom_node_text(aes(x = x*1.15, y=y*1.15, filter = leaf, label=name, angle = angle, hjust=hjust*0.4, colour=group), size=2.5, alpha=1) +
        # 设置节点的大小,颜色和透明度
        geom_node_point(aes(filter = leaf, x = x*1.07, y=y*1.07, colour=group, size=value, alpha=0.2)) +
        # 设置颜色的画板
        scale_colour_manual(values= rep( brewer.pal(9,"Paired") , 30)) +
        # 设置节点大小的范围
        scale_size_continuous( range = c(1,10) ) +
        theme_void() +
        theme(
                legend.position="none",
                plot.margin=unit(c(0,0,0,0),"cm"),
        ) +
        expand_limits(x = c(-1.3, 1.3), y = c(-1.3, 1.3))
image.png
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936 
## [2] LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] RColorBrewer_1.1-2 forcats_0.4.0      stringr_1.4.0     
##  [4] dplyr_1.0.2        purrr_0.3.2        readr_1.3.1       
##  [7] tidyr_1.1.2        tibble_2.1.3       tidyverse_1.2.1   
## [10] igraph_1.2.4.1     ggraph_2.0.3       ggplot2_3.2.0     
## [13] ggdendro_0.1.22   
## 
## loaded via a namespace (and not attached):
##  [1] ggrepel_0.8.1      Rcpp_1.0.5         lubridate_1.7.4   
##  [4] lattice_0.20-38    assertthat_0.2.1   digest_0.6.20     
##  [7] ggforce_0.3.2      R6_2.4.0           cellranger_1.1.0  
## [10] backports_1.1.4    evaluate_0.14      httr_1.4.0        
## [13] pillar_1.4.2       rlang_0.4.7        lazyeval_0.2.2    
## [16] readxl_1.3.1       rstudioapi_0.10    rmarkdown_1.13    
## [19] labeling_0.3       polyclip_1.10-0    munsell_0.5.0     
## [22] broom_0.5.2        compiler_3.6.0     modelr_0.1.4      
## [25] xfun_0.8           pkgconfig_2.0.2    htmltools_0.3.6   
## [28] tidyselect_1.1.0   gridExtra_2.3      graphlayouts_0.7.0
## [31] viridisLite_0.3.0  crayon_1.3.4       withr_2.1.2       
## [34] MASS_7.3-51.4      grid_3.6.0         nlme_3.1-139      
## [37] jsonlite_1.6       gtable_0.3.0       lifecycle_0.2.0   
## [40] magrittr_1.5       scales_1.0.0       cli_1.1.0         
## [43] stringi_1.4.3      farver_1.1.0       viridis_0.5.1     
## [46] xml2_1.2.0         generics_0.0.2     vctrs_0.3.2       
## [49] tools_3.6.0        glue_1.4.2         tweenr_1.0.1      
## [52] hms_0.4.2          yaml_2.2.0         colorspace_1.4-1  
## [55] tidygraph_1.2.0    rvest_0.3.4        knitr_1.23        
## [58] haven_2.3.1
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352