机器学习面试002—kNN

1. 如何理解kNN中的k的取值?

Ans :①选取较小的k值时,相当于用较小的领域中的训练实例进行预测,“学习”近似误差会减小,只有与输入实例很相近的样本才会对预测结果起作用。但是,“学习”的估计误差会增大,整体模型会变得复杂,容易过拟合
②选取较大的k值是,相当于用较大的领域中的训练实例进行预测,可以减少学习的估计误差,但是近似误差会增大,因为离输入实例较远的样本也对预测结果起作用,容易使预测发生错误。k过大导致模型变得简单。
③在选取k上,一般取比较小的值,并采用交叉验证法进行调优。

2. 在kNN的样本搜索中,如何进行高效的匹配查找?

Ans :①线性扫描(数据多时,效率低)
②构建数据索引——Clipping和Overlapping两种。前者划分的空间没有重叠,如k-d树;后者划分的空间相互交叠,如R树。

3. 那什么是KD树?怎么构建的?

Ans:kd树是对数据点在k维空间中划分的一种数据结构,主要用于多维空间关键数据的搜索。本质上,kd树就是一种平衡二叉树。
思想:先对计算各个维度的方差,选取最大方差的维度作为候选划分维度(方差越大,表示此维度上数据越分散);对split维度上的值进行排序,选取中间的点为node-data;按照split维度的node-data对空间进行一次划分;对上述子空间递归以上操作,直到空间只包含一个数据点。分而治之,且循环选取坐标轴

4. 能简单介绍一下KD树的查找,以及增、删、改的实现流程吗?

Ans:先二叉查找,找到候选最近点;沿着路径进行回溯,画圆,是否父节点平面交割,以判断是否需要进入另一个平面进行查找;依次回溯,画圆,寻找最近点。
KD树更适合用于训练实例数远大于空间维数时的k近邻搜索。当维数超过20维时,KD数的检索效率急剧下降,几乎接近贪婪的线性扫描。因此出现对KD树的改进——BBF算法,M树,VP树,MVP树等高维空间索引树。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 一.朴素贝叶斯 1.分类理论 朴素贝叶斯是一种基于贝叶斯定理和特征条件独立性假设的多分类的机器学习方法,所...
    wlj1107阅读 3,078评论 0 5
  • 随缘不强求,强求不亦于争取!机会是靠争取而来,每一次成功都不是偶然。失败无数次只为能成功一次,不要惧怕失败,因为失...
    3a3774d1dfef阅读 414评论 0 1
  • - 新尝试 想听42的时候发现除了coldplay,还有一团叫bad books也有首歌叫42,也很好听,然后发现...
    oo上海阅读 217评论 0 2
  • 各位新邻居: 大家好!在大家的共同努力下,历经波折的房子在拖延近一年后,终于在去年十二月初交给了我们。虽然开...
    先生小酒人阅读 578评论 0 0
  • 时光之间 花光大学四年我才懂:"早做准备真的太重要了"原创 最好的等候, 是你能如期而至 曾在一本杂志书的角落瞄到...
    扶桑若木_7b97阅读 130评论 0 0