这些数据指标运营人员每天都在关注,你知道吗?

在软件及移动应用类产品常用的数据指标当中,不仅只有新增用户数,活跃用户数指标统计。其实,累计共有14种,这些数据是百万运营人员每天都需要关注的指标。


新增用户数New Users


指首次打开应用的用户数量,通常通过设备识别符(如苹果系统的UDID)来识别用户的唯一身份。由于传输统计数据需要联网,因此即便是首次打开应用,若未能联网,也统计不到。此外,卸载再安装通常不会算作新增用户,老用户的版本升级也不会计算在内。当然,如果下载了应用并未安装,或安装之后没有启动过,也无法统计为新增用户。


活跃用户数Active Users

指统计周期内有过特定使用行为的用户数量。同一用户在一个统计周期内多次使用记作一个活跃用户。这里“使用行为”的定义因应用而异,有的团队将启动即视作活跃,有的则需要满足启动+执行某种操作(如浏览过至少一条新闻),还有的则索性将常驻后台的守护进程没有杀死也统计进活跃范畴中。因此如何计量活跃用户数,归根到底还是看团队真正追求的是什么。活跃用户数一般看“日活”(Daily Active

Users,DAU)和“月活”(Monthly Active Users,MAU)。


升级用户数Updated Users


指由已装的老版本升级到新版本的用户数量。时常有人问,像QQ这样保有量已经很大的应用,为什么每天还能在应用市场上创造如此巨大的下载量?其中很重要的因素之一,就是将用户从老版本升级到新版本的下载行为统计了进去。


留存率Retention Rate


指用户在某段时间内开始使用应用后,经过一段时间,依然继续使用,这部分用户站当时新增用户的比率,也就是“有多少人最后留下来了”。留存率用于衡量应用的质量和营销效果的好坏。通常新增用户如何因为真实需求而来(如从应用市场主动搜索并下载获得),则留存率较高;而因为博眼球的营销推广(如从应用市场主动搜索并下载获得),则留存率较高;并且,不同种类应用的留存率也有各自的基准,如游戏的首月留存率通常比社交类高,而工具类的首月留存率又比游戏高。留存率通常看次日留存率、3日留存率、7日留存率、15日留存率和30日留存率。

总用户数Total Users


指历史上所有新增用户数之和。该数字由单纯地相加获得,存在一定水分,无法体现已经流失或极不活跃的用户情况。


单次使用时长Duration


指用户从一次启动到退出应用所耗费的时间长短,用于衡量应用的黏性。应用在后台运作并不会计入其中。不同类别的应用,单次使用时长可以千差万别。工具类产品解决问题目标明确,用户完成任务之后就会立即退出,比如看一下天气、优化一下内存占用等,用几秒就可以关闭。而视频播放类应用则能持续更久,通常可到达十几分钟。


平均单次使用时长Average Duration


计算方法是某日总使用时长/该日启动数,可用于更准确地评估用户的使用状态。因为一款应用在不同时段的使用时长可能存在差别,用户早上挤地铁时一瞥于晚间睡觉前的沉浸使用,其单次使用时长本身是不可具备可比性的,只有平均之后才能用于横向比较。

使用间隔Interval


指连续两次使用之间的时间间隔。如果一款定位于提供每日新闻资讯的应用的使用间隔过长,则说明对用户的黏性不够强,并未培养成每日使用的习惯,只是在偶尔想起来时看一眼。这就需要在产品上下功夫,或采取一些运营手段弥补,如定时推送当日的头条新闻。


转化率Conversion Rate


指应用内特定行为目标的转化情况,如让用户点击某个按钮、播放一段视频、邀请一批好友等。


K 因子K-Factor

衡量产品的病毒传播能力,计算方法为每个用户平均发出的邀请数量/收到邀请转化成新增用户的比率。如果K因子大于1,表明产品具有自我传播能力,会随着用户的使用而持续扩散。


每用户平均收益Average Revenue Per User,ARPU


简单的理解就是“能从每个用户那里收多少钱”,是衡量产品盈利能力的指标,也可用来检测不同市场渠道获取的用户质量。ARPU的通常计算方法是产品在一定时限内的收入/活跃用户数。结合单用户的获取成本,可以推断出产品是否能形成自我造血的持续发展能力。


每付费用户平均收益Average Revenue Per Paid User,ARPPU


与ARPU将收入平摊到所有用户头上不同,ARPPU只计算从所有付费用户出获取的平均收益,据此更准确地把握收费用户的支付能力、消费习惯,并有针对性地对这部分付费用户重点运营和服务。


月付费率Monthly Payment Ratio


MPR指一个月的统计区间内付费用户占活跃用户的比例。


生命周期价值Life Time Value,LTV


用户从第一次使用产品,到最后一次使用之间,累计贡献的付费总量。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容