112-文本分析之基于网络集群识别和主题模型的聚类

1、 基于网络集群识别的自动化聚类

共现关系聚类,利用社交网络分析(Social Network Analysis, SNA)来构建知识图谱,然后进行集群的识别(Community Detection),从而给文本基本单元进行自动分类。

随便文本代替即可,包括两列,一列为文档名或编号,一列为文本内容。

storagebottles <- read.csv("dataset/ali/storagebottles0905.csv", 
                           header = F) %>% 
  set_names(c("sku_name", "sku_price", "sku_sale_volume", "sku_score",
              "sku_ship", "sku_isNewin", "sku_isPromotion", 
              "sku_isTopselling", "shop_name", "sku_link", "category4")) %>%
  distinct(.keep_all = T)

df <- select(storagebottles, sku_id, sku_name)
# akc用于自动化的共现关系网络构建和集群识别
library(pacman)
p_load(dplyr, akc)

# 数据清洗
# rmParentheses=T清除小括号及其小括号内的内容
# 清除前后空格
# 清除所有空字符和数字字符
# 英文转小写
clean_data <- keyword_clean(df = df,
                            id = "sku_id", 
                            keyword = "sku_name")

# 关键词根据词干和词元归并
# 例如,“good boy”和“good boys”分别出现了5次和 9次,这两个短语具有相同的词元(“good boy”)
# 所以最后会被归并为出现次数最多的“good boys”
merge_data <- keyword_merge(clean_data)
merge_data
## # A tibble: 1,199 × 2
##    id               keyword                                                                  
##    <chr>            <chr>                                                                    
##  1 3256803118990386 "0.4l-1.7l stainless steel airtight coffee container storage canister se…
##  2 3256803826538697 "1-100pcs empty silver aluminum tins cans screw top round candle spice t…
##  3 3256804186933336 "1-30ml straight draw perfume refill tools set plastic diffuser syringe …
##  4 3256804187105399 "1-30ml straight draw perfume refill tools set plastic diffuser syringe …
##  5 3256803725515784 "1/10pcs plastic 70/86mm storage cap ribbed lids regular mouth screw cap…
##  6 3256804252879281 "1/2/3/4/5 pcs portable squeeze travel bottle facial bath bottle contain…
##  7 3256804202452859 "1/2/3/5 ml mini glass sample vials perfume bottle laboratory liquid fra…
##  8 3256804206267630 "1/2/3/5 ml mini glass sample vials perfume bottle laboratory liquid fra…
##  9 3256803534413593 "1/2/3/5 ml roll on bottle refillable empty glass essential oils perfume…
## 10 3256803873654482 "1/2/3pcs kitchen gadgets fresh herb keeper container clear spice fridge…
## # … with 1,189 more rows
# 关键词自动分类
# ?tidygraph::group_graph可以寻找更多识别算法
grouped_data <- keyword_group(merge_data,
                              # 默认集群算法
                              com_detect_fun = group_fast_greedy,
                              # 只对词频最大的200个词进行分类
                              top = 200)
grouped_data
## # A tbl_graph: 2 nodes and 1 edges
## #
## # An unrooted tree
## #
## # Node Data: 2 × 3 (active)
##   name                                                                             freq group
##   <chr>                                                                           <int> <int>
## 1 2021new chili cans women&#39                                                        1     1
## 2 s self-defense high concentration anti wolf spray portable self-defense spray …     1     2
## #
## # Edge Data: 1 × 3
##    from    to     n
##   <int> <int> <int>
## 1     1     2     1
# 转换为数据框
# name列保存的是关键词信息,freq列是关键词的词频,而group列则保存了关键词所属的类
as_tibble(grouped_data)
## # A tibble: 2 × 3
##   name                                                                             freq group
##   <chr>                                                                           <int> <int>
## 1 2021new chili cans women&#39                                                        1     1
## 2 s self-defense high concentration anti wolf spray portable self-defense spray …     1     2
# 结果输出
# 表格输出,对每个聚类中词频最高的10个关键词进行表格显示
keyword_table(grouped_data, top = 10)
## # A tibble: 2 × 2
##   Group `Keywords (TOP 10)`                                                                  
##   <int> <chr>                                                                                
## 1     1 2021new chili cans women&#39 (1)                                                     
## 2     2 s self-defense high concentration anti wolf spray portable self-defense spray cans (…
# 可视化输出
keyword_vis(grouped_data)
000018.jpg

2、基于主题模型的分类

p_load(tidytext, topicmodels)

# 使用akc包带的数据
tidy_data <- keyword_clean(bibli_data_table, lemmatize = F) %>% 
  keyword_merge(reduce_form = "stem")

# 生成DTM
dtm_data <- count(tidy_data, id, keyword) %>% 
  cast_dtm(id, keyword, n)

# LDA分析
lda_data <- LDA(dtm_data, k = 2, control = list(seed = 2022))
lda_data
## A LDA_VEM topic model with 2 topics.
# 查看关键词所属主题的概率
lda_topic <- tidy(lda_data, matrix = "beta")
lda_topic
## # A tibble: 6,200 × 3
##    topic term                         beta
##    <int> <chr>                       <dbl>
##  1     1 austerity               0.000314 
##  2     2 austerity               0.000430 
##  3     1 community capacity      0.000195 
##  4     2 community capacity      0.000177 
##  5     1 library professionals   0.000612 
##  6     2 library professionals   0.000505 
##  7     1 public libraries        0.0181   
##  8     2 public libraries        0.00948  
##  9     1 public service delivery 0.000362 
## 10     2 public service delivery 0.0000106
## # … with 6,190 more rows
# 查看每个主题概率最高的5个关键词
topic_terms <- lda_topic %>% 
  group_by(topic) %>% 
  top_n(5, beta) %>% 
  ungroup() %>% 
  arrange(topic, -beta)
p_load(ggplot2)
# 使用条形图进行展示
topic_terms %>% 
  mutate(term = reorder_within(term, beta, topic)) %>% 
  ggplot(aes(term, beta, fill = factor(topic))) +
  geom_col(show.legend = F) +
  facet_wrap(~ topic, scales = "free") +
  coord_flip() +
  scale_x_reordered()
条形图展示
# 判断文档属于哪个主题
lda_gamma <- tidy(lda_data, matrix = "gamma")
lda_gamma
## # A tibble: 1,942 × 3
##    document topic gamma
##    <chr>    <int> <dbl>
##  1 1            1 0.516
##  2 2            1 0.496
##  3 3            1 0.490
##  4 4            1 0.471
##  5 5            1 0.495
##  6 6            1 0.508
##  7 7            1 0.497
##  8 8            1 0.498
##  9 9            1 0.508
## 10 10           1 0.503
## # … with 1,932 more rows
# 每个文档中每个关键词的数量及其所属主题
assignments <- augment(lda_data, data = dtm_data)
assignments
## # A tibble: 5,365 × 4
##    document term                  count .topic
##    <chr>    <chr>                 <dbl>  <dbl>
##  1 1        austerity                 1      2
##  2 719      austerity                 1      2
##  3 1        community capacity        1      1
##  4 1        library professionals     1      1
##  5 522      library professionals     1      1
##  6 863      library professionals     1      1
##  7 1        public libraries          1      1
##  8 2        public libraries          1      1
##  9 49       public libraries          1      1
## 10 51       public libraries          1      1
## # … with 5,355 more rows
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容