TsingHuaDSA-树

该文章为清华大学数据结构与算法设计MOOC课程读书笔记.

1. 数据结构的静态操作与动态操作

静态操作(static operation) : search
动态操作(dynamic operation) : insert, remove

效率 Vector List
static O(lgn) 线性
dynamic 线性 O(1)

因为vector和list在静态或者动态操作中,有一种操作为线性的效率,因此称他们为线性数据结构

Tree综合了Vector和List的优点,高效地兼顾了静态操作与动态操作。虽然具有线性特征,但是不完全是线性结构,因此可以称之为半线性结构

2. 有根树与有序树

有根:树本身是一个图,指定图中某个点为root,该图则变成有根树。
有序:在数学上树的孩子可以无序,但是在计算机对树的表示中,需要指定出孩子间所存在的一种有序性,因此称为有序树。

有序树

关于树的节点还有边的关系,重要的是:它们的数量级同阶

3. 树结构的特性(与图的区别)

简单来讲,树是一种连通无环图.

  1. 连通性(connected):任意两点之间均有路径 -> 边数不会太少
  2. 无环性(acyclic):不存在环路 -> 边数不能太多

推论:

任何节点v与root之间存在唯一的path

  • 对于半线性的另一种理解:前驱(prev)只有一个,唯一确定,后继(succ)可以有多个,不确定。

4. 树的表示

“长子兄弟(1st-child & sibling)”法:每个节点维持两个指针,一个指针指向第一个child node,另一个指针指向后一个sibling node。

5. 二叉树

5.1 性质

二叉树性质

节点数最少与高度h同阶,最多可以是高度h的幂指数级。

5.2 表示与实现

二叉树实现

6. 二叉树的遍历

通过遍历,将半线性结构的树转换为完全线性结构的遍历序列,使某些问题得到简化。

二叉树的遍历

按照节点被访问的顺序分类:先序(pre-order),中序(in-order),后序(post-order),层次(level-order)

特点:每个节点只被访问一次,复杂度O(n).

6.1 先序遍历

(1)递归实现

按照定义,递归实现很简单。但是在运行栈中,由于每个递归实例需要占据固定的空间,递归实现的效率其实并不高。

(2)迭代实现1

先序遍历迭代实现思路
先序遍历迭代实现

因为stack的LIFO性质,注意节点入栈的顺序:先右后左

(3)迭代实现2

虽然迭代实现1非常简单易懂,但是不利于推广到中序以及后序遍历中,因此需要一个更加能够抓住遍历本质的算法。

观察
左侧链

通过对遍历过程的观察可知,遍历具有这样一个特点:先沿着左侧链(left-branch)不断向下访问,再自下而上地去访问右子树。

因此,实现的思路是:

沿着left-branch自上而下地访问节点,同时将其对应的右孩子压入栈中。

实现-part1
实现-part2

6.2 中序遍历

(1) 递归实现

同理

(2) 迭代实现

观察
左侧链

观察可知:最先访问的节点是最左的节点,总体而言自下而上地进行访问。因此需要一种LIFO的数据结构-Stack。

因此,实现的思路是:

沿着left-branch找到最左节点并访问,在这个过程中将沿途的节点压入栈中。访问完当前节点后控制权转移到当前节点的右子树。

实现

(3) 效率分析 - 分摊分析(Amortized Analysis)法

效率分摊分析

乍一看,两个循环,每个循环最坏可以达到O(n),因此O(n2)。这好比一个正方形,每个循环分别代表一条边,因为每条边的长度O(n),因此面积O(n2)。

但是仔细分析之后,真正的运行时间好比正方形框中的一条条直线,每条直线的长度对应s.push()的操作次数,因为每个节点最多入栈一次,节点数目为n,因此各条直线的累积和为O(n)。相当与平均下来,每条直线的长度只是O(1),因此实际面积(即实际时间复杂度)为O(n).

6.3 后序遍历

难点
观察
左侧链

观察可知:最先访问的节点是最左的叶节点,总体而言自下而上地进行访问。因此需要一种LIFO的数据结构-Stack。

因此,实现的思路是:

沿着left-branch找到最左叶节点并访问,在这个过程中将沿途的节点以及其右子树节点压入栈中。访问完当前节点后控制权转移到当前节点的右子树。

实现-part1
实现-part2

后序遍历应用 - 表达式树

前缀表达式构建表达式树
后序遍历表达式树可生成RPN

对表达式树的后序遍历可以生成RPN,再根据RPN的算法来计算表达式的值。

6.4 层次遍历

思路:在之前的三种遍历中,都有着一种逆序访问的过程,即后代咸鱼祖先被访问。因此,这三种遍历的实现都借助与Stack这种具有LIFO特性的数据结构。但是在层次遍历中,严格遵循着父辈先与子辈被访问,因此需要一种FIFO的数据结构-Queue。

实现

6.5 重构

思想:通过遍历序列确定root + 左子树节点 + 右子树节点,然后递归地重构出二叉树。

(1) 普适方法

二叉树的重构

通过先序/后序遍历的序列来确定root,再根据中序遍历序列来确定左、右子树。

注意,只通过先序和后续遍历的序列,是不能够保证重构的,因为:

若只存在左子树或者右子树,是无法确定是左子树还是右子树的。

(2) 特殊情况:真二叉树proper binary tree

由于在真二叉树中,某个节点要么左右子树都没有,要么左右子树都有,因此可以确定出root,左子树以及右子树。

真二叉树重构
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 树的概述 树是一种非常常用的数据结构,树与前面介绍的线性表,栈,队列等线性结构不同,树是一种非线性结构 1.树的定...
    Jack921阅读 4,489评论 1 31
  • 基于树实现的数据结构,具有两个核心特征: 逻辑结构:数据元素之间具有层次关系; 数据运算:操作方法具有Log级的平...
    yhthu阅读 4,320评论 1 5
  • 一直以来,我都很少使用也避免使用到树和图,总觉得它们神秘而又复杂,但是树在一些运算和查找中也不可避免的要使用到,那...
    24K男阅读 6,782评论 5 14
  • 1 序 2016年6月25日夜,帝都,天下着大雨,拖着行李箱和同学在校门口照了最后一张合照,搬离寝室打车去了提前租...
    RichardJieChen阅读 5,165评论 0 12
  • 前言 总括: 本文讲解了数据结构中的[树]的概念,尽可能通俗易懂的解释树这种数据结构的概念,使用javascrip...
    秦至阅读 819评论 0 6