-
ROI操作
Mat coin = imread("coin.jpg");
Mat im = imread("1.jpg");
//提取出图片特定区域
//Mat imROI(im, Rect(im.cols - coin.cols, im.rows - coin.rows, coin.cols, coin.rows));
Mat imROI = im(Range(im.rows - coin.rows, im.rows), Range(im.cols - coin.cols, im.cols));
coin.copyTo(imROI);
imshow("", im);
-
访问像素点
Parallel Pixel Access in OpenCV using forEach
at方法实现椒盐噪声
随机选择一些像素,将其替换为白色或者黑色
void salt(cv::Mat image, int n) {
int i, j;
for (int k = 0; k<n; k++) {
// rand()是随机数生成器
i = std::rand() % image.cols;
j = std::rand() % image.rows;
if (image.type() == CV_8UC1) { // 灰度图像
image.at<uchar>(j, i) = 255;
}
else if (image.type() == CV_8UC3) { // 彩色图像
image.at<cv::Vec3b>(j, i)[0] = 255;
image.at<cv::Vec3b>(j, i)[1] = 255;
image.at<cv::Vec3b>(j, i)[2] = 255;
}
}
}
迭代器
void colorReduce(cv::Mat image, int div = 64) {
auto it = image.begin<Vec3b>();
while(it < image.end<Vec3b>()){
// 处理每个像素 ---------------------
(*it)[0] = (*it)[0] / div*div + div / 2;
(*it)[1] = (*it)[1] / div*div + div / 2;
(*it)[2] = (*it)[2] / div*div + div / 2;
++it;
}
}
int main() {
Mat im = imread("1.jpg");
colorReduce(im);
imshow("", im);
END:
waitKey(0);
system("pause");
return 0;
}
- 反向投影(Back Projection)
Back Projection
给出ROI的直方图分布,主要要归一化,把每个柱子当作对应强度出现的概率,然后在测试图像中,每个像素点的强度去查询前面的概率(0~1),然后作为新图像的强度(也可以乘以255得到整形强度值)。
程序流程,BGR->HSV->Hue
然后取出ROI进行生成直方图数据
然后再backproject在整个Hue上面。
程序运行后,框一个框,然后回车或者是空格。
对魔方的识别还不是很好,每种颜色都要自定义一些参数,然后会有稍微一些混淆。肤色识别的很好。
代码:
string windowName = "back project";
const int maxSlideValue = 255;
int slideValue;
Mat src, hsv, hue, ROI, hist, imBackProject;
int threashold = 10;
int histSize = 10;
void on_trackbar1(int slideValue, void* imBackProject){
threashold = slideValue;
//分析ROI的直方图分布
float hue_range[] = { 0, 255 };
const float* ranges = { hue_range };
calcHist(&ROI, 1, 0, Mat(), hist, 1, &histSize, &ranges);
normalize(hist, hist, 0, 255, NORM_MINMAX);
calcBackProject(&hue, 1, 0, hist, *(Mat *)imBackProject, &ranges, 1, true);
Mat imBackProject2;
threshold(*(Mat *)imBackProject, imBackProject2, threashold, 255, THRESH_BINARY);
imshow(windowName, imBackProject2);
}
void on_trackbar2(int slideValue, void* imBackProject) {
histSize = max(slideValue,2);
//分析ROI的直方图分布
float hue_range[] = { 0, 255 };
const float* ranges = { hue_range };
calcHist(&ROI, 1, 0, Mat(), hist, 1, &histSize, &ranges);
normalize(hist, hist, 0, 255, NORM_MINMAX);
calcBackProject(&hue, 1, 0, hist, *(Mat *)imBackProject, &ranges, 1, true);
Mat imBackProject2;
threshold(*(Mat *)imBackProject, imBackProject2, threashold, 255, THRESH_BINARY);
imshow(windowName, imBackProject2);
}
int main() {
//转化为HSV
//src = imread("4cube.png");
src = imread("hands.jpg");
cvtColor(src, hsv, COLOR_BGR2HSV);
hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, ch, 1);
//while (1) {
//选出ROI
Rect r = selectROI(src);
ROI = hue(r);
namedWindow(windowName);
createTrackbar("阈值化的阈值", windowName, &slideValue, maxSlideValue, on_trackbar1, &imBackProject);
createTrackbar("直方图纵轴个数", windowName, &slideValue, maxSlideValue, on_trackbar2, &imBackProject);
on_trackbar1(threashold, &imBackProject);
on_trackbar2(histSize, &imBackProject);
//threshold(imBackProject, imBackProject, 30, 255, THRESH_BINARY);
//imshow(windowName, imBackProject);
//}
END:
waitKey(0);
system("pause");
return 0;
}