1、为什么使用Nosql
1、单机Mysql时代
90年代,一个网站的访问量一般不会太大,单个数据库完全够用。随着用户增多,网站出现以下问题
- 数据量增加到一定程度,单机数据库就放不下了
- 数据的索引(B+ Tree),一个机器内存也存放不下
- 访问量变大后(读写混合),一台服务器承受不住。
2、Memcached(缓存) + Mysql + 垂直拆分(读写分离)
网站80%的情况都是在读,每次都要去查询数据库的话就十分的麻烦!所以说我们希望减轻数据库的压力,我们可以使用缓存来保证效率!
优化过程经历了以下几个过程:
- 优化数据库的数据结构和索引(难度大)
- 文件缓存,通过IO流获取比每次都访问数据库效率略高,但是流量爆炸式增长时候,IO流也承受不了
- MemCache,当时最热门的技术,通过在数据库和数据库访问层之间加上一层缓存,第一次访问时查询数据库,将结果保存到缓存,后续的查询先检查缓存,若有直接拿去使用,效率显著提升。
3、分库分表 + 水平拆分 + Mysql集群
4、如今最近的年代
如今信息量井喷式增长,各种各样的数据出现(用户定位数据,图片数据等),大数据的背景下关系型数据库(RDBMS)无法满足大量数据要求。Nosql数据库就能轻松解决这些问题。
目前一个基本的互联网项目
为什么要用NoSQL ?
用户的个人信息,社交网络,地理位置。用户自己产生的数据,用户日志等等爆发式增长!
这时候我们就需要使用NoSQL数据库的,Nosql可以很好的处理以上的情况!
2、什么是Nosql
NoSQL = Not Only SQL(不仅仅是SQL)
Not Only Structured Query Language
关系型数据库:列+行,同一个表下数据的结构是一样的。
非关系型数据库:数据存储没有固定的格式,并且可以进行横向扩展。
NoSQL泛指非关系型数据库,随着web2.0互联网的诞生,传统的关系型数据库很难对付web2.0时代!尤其是超大规模的高并发的社区,暴露出来很多难以克服的问题,NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的。
3、Nosql特点
方便扩展(数据之间没有关系,很好扩展!)
大数据量高性能(Redis一秒可以写8万次,读11万次,NoSQL的缓存记录级,是一种细粒度的缓存,性能会比较高!)
数据类型是多样型的!(不需要事先设计数据库,随取随用)
-
传统的 RDBMS 和 NoSQL
传统的 RDBMS(关系型数据库) - 结构化组织 - SQL - 数据和关系都存在单独的表中 row col - 操作,数据定义语言 - 严格的一致性 - 基础的事务 - ...
Nosql - 不仅仅是数据 - 没有固定的查询语言 - 键值对存储,列存储,文档存储,图形数据库(社交关系) - 最终一致性 - CAP定理和BASE - 高性能,高可用,高扩展 - ...
了解:3V + 3高
大数据时代的3V :主要是描述问题的
- 海量Velume
- 多样Variety
- 实时Velocity
大数据时代的3高 : 主要是对程序的要求
- 高并发
- 高可扩
- 高性能
真正在公司中的实践:NoSQL + RDBMS 一起使用才是最强的。
4、阿里巴巴演进分析
推荐阅读:阿里云的这群疯子https://yq.aliyun.com/articles/653511
商品信息
- 一般存放在关系型数据库:Mysql,阿里巴巴使用的Mysql都是经过内部改动的。
商品描述、评论(文字居多)
- 文档型数据库:MongoDB
图片
- 分布式文件系统 FastDFS
- 淘宝:TFS
- Google: GFS
- Hadoop: HDFS
- 阿里云: oss
商品关键字 用于搜索
- 搜索引擎:solr,elasticsearch
- 阿里:Isearch 多隆
商品热门的波段信息
- 内存数据库:Redis,Memcache
商品交易,外部支付接口
- 第三方应用
5、Nosql的四大分类
KV键值对
- 新浪:Redis
- 美团:Redis + Tair
- 阿里、百度:Redis + Memcache
文档型数据库(bson数据格式):
-
MongoDB(掌握)
- 基于分布式文件存储的数据库。C++编写,用于处理大量文档。
- MongoDB是RDBMS和NoSQL的中间产品。MongoDB是非关系型数据库中功能最丰富的,NoSQL中最像关系型数据库的数据库。
- ConthDB
列存储数据库
- HBase(大数据必学)
- 分布式文件系统
图关系数据库
用于广告推荐,社交网络
- Neo4j、InfoGrid
分类 | Examples举例 | 典型应用场景 | 数据模型 | 优点 | 缺点 |
---|---|---|---|---|---|
键值对(key-value) | Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB | 内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。 | Key 指向 Value 的键值对,通常用hash table来实现 | 查找速度快 | 数据无结构化,通常只被当作字符串或者二进制数据 |
列存储数据库 | Cassandra, HBase, Riak | 分布式的文件系统 | 以列簇式存储,将同一列数据存在一起 | 查找速度快,可扩展性强,更容易进行分布式扩展 | 功能相对局限 |
文档型数据库 | CouchDB, MongoDb | Web应用(与Key-Value类似,Value是结构化的,不同的是数据库能够了解Value的内容) | Key-Value对应的键值对,Value为结构化数据 | 数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构 | 查询性能不高,而且缺乏统一的查询语法。 |
图形(Graph)数据库 | Neo4J, InfoGrid, Infinite Graph | 社交网络,推荐系统等。专注于构建关系图谱 | 图结构 | 利用图结构相关算法。比如最短路径寻址,N度关系查找等 | 很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群 |