Batch Normalization

前面在数据预处理的时候,我们尽量输入特征不相关且满足一个标准的正态分布,这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果变得相关,且不再满足一个标准的 N(0, 1) 的分布,甚至输出的中心已经发生了偏移,这对于模型的训练,特别是深层的模型训练非常的困难。

所以在 2015 年一篇论文提出了这个方法,批标准化,简而言之,就是对于每一层网络的输出,对其做一个归一化,使其服从标准的正态分布,这样后一层网络的输入也是一个标准的正态分布,所以能够比较好的进行训练,加快收敛速度。

batch normalization 的实现非常简单,对于给定的一个 batch 的数据:

则其公式为:
Batch Normalization

也就是说,BN是针对输入的整个数据来说的。
在对普通数值型数据进行BN时,由于其输入为(batsize, 特征数)。所以求均值就是对一个batch size中的所有数据进行均值计算,得到每一个特征的均值,标准差也是一样。

def simple_batch_norm_1d(x, gamma, beta):
    eps = 1e-5
    x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast
    x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)
    
    x_hat = (x - x_mean) / torch.sqrt(x_var + eps)
    
    return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)   

因为训练的时候使用了,而测试的时候不使用肯定会导致结果出现偏差,但是测试的时候如果只有一个数据集,那么均值不就是这个值,方差为 0 吗?这显然是随机的,所以测试的时候不能用测试的数据集去算均值和方差,而是用训练的时候算出的移动平均均值和方差去代替

def batch_norm_1d(x, gamma, beta, is_training, moving_mean, moving_var, moving_momentum=0.1):
    print(x.shape)
    eps = 1e-5
    x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast
    x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)
    if is_training:
        x_hat = (x - x_mean) / torch.sqrt(x_var + eps)
        # 这里使用滑动平均
        moving_mean[:] = moving_momentum * moving_mean + (1. - moving_momentum) * x_mean
        moving_var[:] = moving_momentum * moving_var + (1. - moving_momentum) * x_var
    else:
        x_hat = (x - moving_mean) / torch.sqrt(moving_var + eps)
    return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)

对于二维卷积的输出,BN是计算每一个通道的平均值。这里用mxnet的代码展示这个过程:

from mxnet import nd
def pure_batch_norm(X, gamma, beta, eps=1e-5):
    assert len(X.shape) in (2, 4)
    # 全连接: batch_size x feature
    if len(X.shape) == 2:
        # 每个输入维度在样本上的平均和方差
        mean = X.mean(axis=0)
        variance = ((X - mean)**2).mean(axis=0)
    # 2D卷积: batch_size x channel x height x width
    else:
        # 对每个通道算均值和方差,需要保持4D形状使得可以正确地广播
        mean = X.mean(axis=(0,2,3), keepdims=True)
        print(mean)
        variance = ((X - mean)**2).mean(axis=(0,2,3), keepdims=True)

    # 均一化
    X_hat = (X - mean) / nd.sqrt(variance + eps)
    # 拉升和偏移
    return gamma.reshape(mean.shape) * X_hat + beta.reshape(mean.shape)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容