仿射变换——矩阵(图像)旋转平移

仿射变换就是线性变换再加上平移(如果你忘了什么是线性变换,看这里矩阵向量乘法与线性变换)。在图像处理中常用来对图像做旋转平移。
下面以图像和Python OpenCV API为例讲解仿射变换。(以下内容转自OpenCV Python 学习笔记(三) 仿射变换

仿射变换就是图像的线性变换加上平移,用一幅图表示,就是

image.png

由 image1 到 image2 的转换经过了三个操作

旋转 (线性变换)缩放操作(线性变换)平移 (向量加)如果没有了第3个平移的操作,那它就是线性变换。前两个笔记已经整理了图像的旋转、缩放和平移的各个方法,接下来会介绍仿射变换的矩阵表示和使用方法。

仿射变换的矩阵形式
图像的变换要对图像的每一个像素点进行操作,假设其中的一个像素点的坐标是(x,y),我们用矩阵形式表示:

image.png

我们通常使用2x3矩阵来表示仿射变换


变换矩阵

其中矩阵A控制旋转和伸缩,矩阵B控制平移,矩阵M是完整的仿射变换矩阵。
经过仿射变换后的点的矩阵坐标是T,我们已经知道放射变换就是线性变换加上平移,用矩阵表示的话就是


image.png

也可以写成
image.png

计算可得


image.png

图像平移的代码:

import cv2
import numpy as np        

img = cv2.imread('Rachel.jpg', 0)  
rows, cols = img.shape         

M = np.float32([[1, 0, 200], [0, 1, 100]])  
dst = cv2.warpAffine(img, M, (cols, rows))       

cv2.imshow('img', dst)  
k = cv2.waitKey(0)  
if k == ord('s'):  
    cv2.imwrite('Rachel3.jpg', dst)  
    cv2.destroyAllWindows()

可以看到第7行

M = np.float32([[1, 0, 200], [0, 1, 100]])

将这个二维矩阵的值带入T,得到经过仿射变换后的点的坐标是(x+200,y+100),即将整个图像平移(200,100)

旋转图像的代码:

import cv2  
      
img = cv2.imread('Rachel.jpg', 0)  
rows, cols = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1)  
dst = cv2.warpAffine(img, M, (cols, rows)) # 仿射变换,以后再说  
cv2.imshow('Rachel', dst)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

大部分同上类似,只是其中的 M 矩阵不同

M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1)  # 第一个参数是中心点的坐标 

cv2.getRotationMatrix2D这个函数就是生成图像旋转的所需要的矩阵

那么如何通过仿射变换任意变换图形呢?

我们需要源图像和目标图像上分别一一映射的三个点来定义仿射变换

示例代码:

img = cv2.imread('Rachel.jpg')
rows, cols, ch = img.shape
 
pts1 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]])
pts2 = np.float32([[cols * 0.2, rows * 0.1], [cols * 0.9, rows * 0.2], [cols * 0.1, rows * 0.9]])
 
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(img, M, (cols, rows))
 
cv2.imshow('image', dst)
k = cv2.waitKey(0)
if k == ord('s'):
    cv2.imwrite('Rachel1.jpg', dst)
    cv2.destroyAllWindows()

结果 :


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容