超像素分割算法

姓名:袁卓成;学号:20021210612; 学院:电子工程学院

转自https://blog.csdn.net/studyeboy/article/details/93981017

【嵌牛导读】本文介绍了超像素分割算法的原理

【嵌牛鼻子】超像素分割

【嵌牛提问】超像素块的形状由哪些参数来控制?

【嵌牛正文】

概念

超像素由一系列位置相邻且颜色、亮度、纹理等特征相似的像素点组成的小区域。这些小区域大多保留了进一步进行图像分割的有效信息,且一般不会破坏图像中物体的边界信息。

超像素是吧一幅像素级(pixel-level)的图,划分成区域级(district-level)的图,是对基本信息元素进行的抽象。


(a)是原始图像,(b)是基于人类视角的分割图(groundtruth,(c)是超像素分割的图像,(d)是基于(c)进行分割的图像。

超像素最大的功能之一是作为图像处理其他算法的预处理,在不牺牲太大精确度的情况下降维。

超像素最直观的解释是把一些具有相似特性的像素“聚合”起来,形成一个更具有代表性的大“元素”。而这个新元素,将作为其他图像处理算法的基本单位。这样可以降低维度,剔除一些异常像素点。

理论上,任何图像分割算法的过度分割(over-segmentation)即可生成超像素。

图像分割中的超像素是指具有相似纹理、颜色、亮度等特征的相邻相似构成的具有一定意义的不规则的像素块。它利用像素之间特征的相似性将像素分组,用少量的超像素代替大量的像素来表达图像特征,很大程度上降低了图像处理的复杂度,所以通常作为分割算法的预处理步骤。

超像素初始化的方法

种子像素初始化

SLIC利用了简单的聚类(贪婪)算法,初始时,每一个聚类的中心被平均的分布在图像中,而超像素的个数,可以基本由这些中心点来决定。每一步迭代,种子像素合并周围的像素,形成超像素。



矩形区域初始化

SEEDS的初始化是把图像平均分割成很多矩形,初始超像素即为这些矩形。每一步迭代,超像素的边缘不断变化,直到汇合。


超像素算法



SLIC算法

SLIC(simple linear iterative clustering),即简单的线性迭代聚类。它是2010年提出的一种思想简单、实现方便的算法,将彩色图像转换为CIELAB颜色空间和XY坐标下的5维特征向量,然后对5维特征向量构造距离度量标准,对图像像素进行局部聚类的过程。SLIC算法能生成紧凑近似均匀的超像素,在运算速度,物体轮廓保持、超像素形状方面具有较高的综合评价,比较符合人们期望的分割效果。

SLIC优点:

生成的超像素如同细胞一般紧凑整齐,邻域特征比较容易表达。这样基于像素方法可以比较容易的改造为基于超像素的方法。

不仅可以分割彩色图像,也可以兼容分割灰度图。

需要设置的参数非常少,默认情况下只需要设置一个预分割的超像素的数量。

相比其他的超像素的分割方法,SLIC在运行速度、生成超像素的紧凑度、轮廓保持方面都比较理想。

算法步骤:

初始化种子点(聚类中心):按照设定的超像素的个数,在图像内均匀的分配种子点。假设图像总共有N个像素点,预分割为K个相同尺寸的超像素,那么每个超像素的大小为N/K,则相邻种子点的距离(步长)近似为S = sqrt(N/K)。

在种子点的n*n领域内重新选择种子点(一般取n=3):计算该领域内所有像素点的梯度值,将种子点移到该领域内梯度最小的地方。避免种子点落在梯度较大的轮廓边界上,以免影响后续聚类效果。

在每个种子点周围的领域内为每个像素点分配类别标签(即属于哪个聚类中心):SLIC的搜索范围是2Sx2S,期望的超像素尺寸为SxS,这样可以加速算法收敛。

距离度量:包括颜色距离和空间距离。对每个搜索到的像素点,分别计算它和该种子点的距离。


其中,d_{c} 代表颜色距离,d_{s} 代表空间距离,N_{s}是类内最大空间距离,定义为N_{s} = S = sqrt(N/K) ,适用于每个聚类。最大的颜色距离N_{c}既随图像不同而不同个,也随聚类不同而不同,所以取一个固定常数m(取值范围[1,40],一般取10)代替,最终的聚类度量如下:


由于每个像素点都会被多个种子点搜索到,所以每个像素点都会有一个与周围种子点的距离,取最小值对应的种子点作为该像素点的聚类中心。

迭代优化:理论上上述步骤不断迭代知道误差收敛(每个像素点聚类中心不再发生变化为止),实践发现10次迭代对绝大部分图片都可以得到较理想效果,所以一般迭代次数取10。

增强连通性:解决经过迭代后出现的多连通情况、超像素尺寸过小、单个超像素被切割成多个不连续超像素的情况。具体步骤为:新建一张标记表,表内元素均为-1,按照“Z”型走向(从左到右,从上到下顺序)将不连续的超像素、尺寸过小超像素重新分配给临近的超像素,遍历过的像素点分配给相应的标签,直到所有点遍历完毕为止。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容