【OpenAI API】How to stream completions

REF: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb

How to stream completions

默认情况下,当你请求OpenAI的完成时,整个完成内容会在生成后作为单个响应返回。

如果你正在生成长的完成,等待响应可能需要多秒钟。

为了更快地获得响应,你可以在生成完成时“流式传输”完成。这使你可以在完成全文结束之前开始打印或处理完成的开头部分。

要流式传输完成,当调用聊天完成或完成端点时,设置stream=True。这将返回一个对象,以数据为唯一的服务器推送事件流方式返回响应。从delta字段而不是message字段中提取块。

缺点

请注意,在生产应用程序中使用“stream = True”会使内容的评估更加困难,因为部分完成可能更难以评估,这对于批准的使用有影响。

流式响应的另一个小缺点是响应不再包括使用字段来告诉您已经使用了多少个令牌。在接收和组合所有响应后,您可以使用tiktoken自己计算出这个值。

Example code

Below, this notebook shows:

  1. What a typical chat completion response looks like
  2. What a streaming chat completion response looks like
  3. How much time is saved by streaming a chat completion
  4. How to stream non-chat completions (used by older models like text-davinci-003)
# imports
import openai  # for OpenAI API calls
import time  # for measuring time duration of API calls

1. 一个典型的聊天完成响应看起来是什么样子的

With a typical ChatCompletions API call, the response is first computed and then returned all at once.

# Example of an OpenAI ChatCompletion request
# https://platform.openai.com/docs/guides/chat

# record the time before the request is sent
start_time = time.time()

# send a ChatCompletion request to count to 100
response = openai.ChatCompletion.create(
    model='gpt-3.5-turbo',
    messages=[
        {'role': 'user', 'content': 'Count to 100, with a comma between each number and no newlines. E.g., 1, 2, 3, ...'}
    ],
    temperature=0,
)

# calculate the time it took to receive the response
response_time = time.time() - start_time

# print the time delay and text received
print(f"Full response received {response_time:.2f} seconds after request")
print(f"Full response received:\n{response}")

Full response received 3.03 seconds after request
Full response received:

{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": "\n\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.",
        "role": "assistant"
      }
    }
  ],
  "created": 1677825456,
  "id": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion",
  "usage": {
    "completion_tokens": 301,
    "prompt_tokens": 36,
    "total_tokens": 337
  }
}

The reply can be extracted with response['choices'][0]['message'].

The content of the reply can be extracted with response['choices'][0]['message']['content'].

reply = response['choices'][0]['message']
print(f"Extracted reply: \n{reply}")

reply_content = response['choices'][0]['message']['content']
print(f"Extracted content: \n{reply_content}")

Extracted reply:

{
  "content": "\n\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.",
  "role": "assistant"
}

Extracted content:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.

2. How to stream a chat completion

通过流API调用,响应以事件流的形式分成块逐步发送回来。在Python中,你可以使用for循环迭代这些事件。

让我们看看它是什么样子的:

# Example of an OpenAI ChatCompletion request with stream=True
# https://platform.openai.com/docs/guides/chat

# a ChatCompletion request
response = openai.ChatCompletion.create(
    model='gpt-3.5-turbo',
    messages=[
        {'role': 'user', 'content': "What's 1+1? Answer in one word."}
    ],
    temperature=0,
    stream=True  # this time, we set stream=True
)

for chunk in response:
    print(chunk)
{
  "choices": [
    {
      "delta": {
        "role": "assistant"
      },
      "finish_reason": null,
      "index": 0
    }
  ],
  "created": 1677825464,
  "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion.chunk"
}
{
  "choices": [
    {
      "delta": {
        "content": "\n\n"
      },
      "finish_reason": null,
      "index": 0
    }
  ],
  "created": 1677825464,
  "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion.chunk"
}
{
  "choices": [
    {
      "delta": {
        "content": "2"
      },
      "finish_reason": null,
      "index": 0
    }
  ],
  "created": 1677825464,
  "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion.chunk"
}
{
  "choices": [
    {
      "delta": {},
      "finish_reason": "stop",
      "index": 0
    }
  ],
  "created": 1677825464,
  "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion.chunk"
}

As you can see above, streaming responses have a delta field rather than a message field. delta can hold things like:

a role token (e.g., {"role": "assistant"})
a content token (e.g., {"content": "\n\n"})
nothing (e.g., {}), when the stream is over

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容