MySQL慢查询分析工具pt-query-digest

一、简介

pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。

二、安装pt-query-digest

1.下载页面:https://www.percona.com/doc/percona-toolkit/2.2/installation.html
2.perl的模块

yum install -y perl-CPAN perl-Time-HiRes

3.安装步骤
方法一:rpm安装

cd /usr/local/src
wget percona.com/get/percona-toolkit.rpm
yum install -y percona-toolkit.rpm

工具安装目录在:/usr/bin

方法二:源码安装

cd /usr/local/src
wget percona.com/get/percona-toolkit.tar.gz
tar zxf percona-toolkit.tar.gz
cd percona-toolkit-2.2.19 perl Makefile.PL PREFIX=/usr/local/percona-toolkit
make && make install

工具安装目录在:/usr/local/percona-toolkit/bin

4.各工具用法简介(详细内容:https://www.percona.com/doc/percona-toolkit/2.2/index.html
(1)慢查询日志分析统计

pt-query-digest /usr/local/mysql/data/slow.log

(2)服务器摘要

pt-summary

(3)服务器磁盘监测

pt-diskstats 

(4)mysql服务状态摘要

pt-mysql-summary -- --user=root --password=root 

三、pt-query-digest语法及重要选项

pt-query-digest [OPTIONS] [FILES] [DSN] --create-review-table  当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。 --create-history-table  当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。 --filter  对输入的慢查询按指定的字符串进行匹配过滤后再进行分析 --limit    限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。 --host  mysql服务器地址 --user  mysql用户名 --password  mysql用户密码 --history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。 --review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。 --output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。 --since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。 --until 截止时间,配合—since可以分析一段时间内的慢查询。

四、分析pt-query-digest输出结果

第一部分:总体统计结果
Overall:总共有多少条查询
Time range:查询执行的时间范围
unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询
total:总计 min:最小 max:最大 avg:平均
95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值
median:中位数,把所有值从小到大排列,位置位于中间那个数

# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
# 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
# 工具执行时间
# Current date: Fri Nov 25 02:37:18 2016 # 运行分析工具的主机名
# Hostname: localhost.localdomain
# 被分析的文件名
# Files: slow.log
# 语句总数量,唯一的语句数量,QPS,并发数
# Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency ________________
# 日志记录的时间范围
# Time range: 2016-11-22 06:06:18 to 06:11:40 # 属性               总计      最小    最大    平均 95% 标准    中等
# Attribute          total     min     max     avg 95% stddev  median
# ============     ======= ======= ======= ======= ======= ======= ======= # 语句执行时间
# Exec time             3s   640ms      2s      1s      2s   999ms      1s
# 锁占用时间
# Lock time            1ms 0 1ms   723us     1ms     1ms   723us
# 发送到客户端的行数
# Rows sent 5       1       4    2.50       4    2.12    2.50 # select语句扫描行数
# Rows examine 186.17k       0 186.17k  93.09k 186.17k 131.64k  93.09k
# 查询的字符数
# Query size 455      15     440  227.50     440  300.52  227.50

第二部分:查询分组统计结果
Rank:所有语句的排名,默认按查询时间降序排列,通过--order-by指定
Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值)
Response:总的响应时间
time:该查询在本次分析中总的时间占比
calls:执行次数,即本次分析总共有多少条这种类型的查询语句
R/Call:平均每次执行的响应时间
V/M:响应时间Variance-to-mean的比率
Item:查询对象

# Profile
# Rank Query ID           Response time Calls R/Call V/M   Item
# ==== ================== ============= ===== ====== ===== =============== 
# 1 0xF9A57DD5A41825CA  2.0529 76.2%     1 2.0529  0.00 SELECT
# 2 0x4194D8F83F4F9365  0.6401 23.8%     1 0.6401  0.00 SELECT wx_member_base

第三部分:每一种查询的详细统计结果
由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。
ID:查询的ID号,和上图的Query ID对应
Databases:数据库名
Users:各个用户执行的次数(占比)
Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。
Tables:查询中涉及到的表
Explain:SQL语句

# Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 ______
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00 # Time range: all events occurred at 2016-11-22 06:11:40 # Attribute    pct   total     min     max     avg 95% stddev  median
# ============ === ======= ======= ======= ======= ======= ======= ======= # Count 50       1 # Exec time 76      2s      2s      2s      2s      2s       0 2s
# Lock time 0       0       0       0       0       0       0       0 # Rows sent 20       1       1       1       1       1       0       1 # Rows examine 0       0       0       0       0       0       0       0 # Query size 3      15      15      15      15      15       0      15 # String:
# Databases    test
# Hosts 192.168.8.1 # Users        mysql
# Query_time distribution
#   1us
#  10us
# 100us
#   1ms
#  10ms
# 100ms
#    1s  ################################################################
#  10s+ # EXPLAIN /*!50100 PARTITIONS*/
select sleep(2)\G

五、用法示例

1.直接分析慢查询文件:

pt-query-digest  slow.log > slow_report.log

2.分析最近12小时内的查询:

pt-query-digest  --since=12h  slow.log > slow_report2.log

3.分析指定时间范围内的查询:

pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log

4.分析指含有select语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log

5.针对某个用户的慢查询

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log

6.查询所有所有的全表扫描或full join的慢查询

pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log

7.把查询保存到query_review表

pt-query-digest --user=root –password=abc123 --review  h=localhost,D=test,t=query_review--create-review-table  slow.log

8.把查询保存到query_history表

pt-query-digest  --user=root –password=abc123 --review  h=localhost,D=test,t=query_history--create-review-table  slow.log_0001
pt-query-digest  --user=root –password=abc123 --review  h=localhost,D=test,t=query_history--create-review-table  slow.log_0002

9.通过tcpdump抓取mysql的tcp协议数据,然后再分析

tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log

10.分析binlog

mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
pt-query-digest  --type=binlog  mysql-bin000093.sql > slow_report10.log

11.分析general log

pt-query-digest  --type=genlog  localhost.log > slow_report11.log

转载原文:https://www.cnblogs.com/luyucheng/p/6265873.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容