什么是流
Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于10的字符串”、“获取每个字符串的首字母”等,Stream会隐式地在内部进行遍历,做出相应的数据转换。
流的构成
获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的Stream对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管。
- 流的生成
- 从 Collection 和数组
- Collection.stream()
- Collection.parallelStream()
- Arrays.stream(T array) or Stream.of()
- 从 BufferedReader
- java.io.BufferedReader.lines()
- 静态工厂
- java.util.stream.IntStream.range()
- java.nio.file.Files.walk()
- 自己构建
- java.util.Spliterator
- 其它
- Random.ints()
- BitSet.stream()
- Pattern.splitAsStream(java.lang.CharSequence)
- JarFile.stream()
- 从 Collection 和数组
- 流的操作
- Intermediate: 一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。
- Terminal: 一个流只能有一个terminal操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。
在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。
还有一种操作被称为short-circuiting。用以指:
- 对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的Stream,但返回一个有限的新 Stream。
- 对于一个 terminal 操作,如果它接受的是一个无限大的Stream,但能在有限的时间计算出结果。
流的操作
- Intermediate
- map (mapToInt, flatMap 等)、把流中的每个元素映射成另外的一个元素,flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。参数是函数式接口
Function
List<String> output = wordList.stream().map(String::toUpperCase).collect(Collectors.toList()); Stream<List<Integer>> inputStream = Stream.of( Arrays.asList(1), Arrays.asList(2, 3), Arrays.asList(4, 5, 6) ); Stream<Integer> outputStream = inputStream.flatMap((childList) -> childList.stream());
- filter、过滤,根据参数返回布尔值,参数是函数式接口
Predicate
Integer[] sixNums = {1, 2, 3, 4, 5, 6}; Integer[] evens = Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);
- distinct、去重
- sorted、排序
- peek、对每个元素执行操作并返回一个新的 Stream
Stream.of("one", "two", "three", "four") .filter(e -> e.length() > 3) .peek(e -> System.out.println("Filtered value: " + e)) .map(String::toUpperCase) .peek(e -> System.out.println("Mapped value: " + e)) .collect(Collectors.toList());
- limit、返回 Stream 的前面 n 个元素。
- skip、扔掉前 n 个元素。
- parallel
- sequential
- unordered
- map (mapToInt, flatMap 等)、把流中的每个元素映射成另外的一个元素,flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。参数是函数式接口
- Terminal
- forEach、遍历流中的每个元素,参数是函数式接口
Consumer
。forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。
IntStream.of(5, 6, 7).forEach(System.out::println);
- forEachOrdered
- toArray
- reduce、把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。
// 字符串连接,concat = "ABCD" String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat); // 求最小值,minValue = -3.0 double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min); // 求和,sumValue = 10, 有起始值 int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum); // 求和,sumValue = 10, 无起始值 sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get(); // 过滤,字符串连接,concat = "ace" concat = Stream.of("a", "B", "c", "D", "e", "F"). filter(x -> x.compareTo("Z") > 0). reduce("", String::concat);
- collect
- min、最小值(为了防止NPE,返回的是
Optional
) - max、最大值(为了防止NPE,返回的是
Optional
) - count
- anyMatch、Stream 中全部元素符合传入的 predicate,返回 true
- allMatch、Stream 中只要有一个元素符合传入的 predicate,返回 true
- noneMatch、Stream 中没有一个元素符合传入的 predicate,返回 true
- findFirst、返回 Stream 的第一个元素,或者空。
- findAny
- iterator
- forEach、遍历流中的每个元素,参数是函数式接口
- Short-circuiting
- anyMatch
- allMatch
- noneMatch
- findFirst
- findAny
- limit
生成流
Stream.generate
通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制 Stream 大小。
Random seed = new Random();
Stream.generate(seed::nextInt).limit(10).forEach(System.out::println);
//Another way
IntStream.generate(() -> (int) (System.nanoTime() % 100)).limit(10).forEach(System.out::println);
Stream.iterate
iterate 跟reduce操作很像,接受一个种子值,和一个UnaryOperator(例如f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。
Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));
总结
- 不是数据结构
- 它没有内部存储,它只是用操作管道从 source(数据结构、数组、generator function、IO channel)抓取数据。
- 它也绝不修改自己所封装的底层数据结构的数据。例如 Stream 的 filter 操作会产生一个不包含被过滤元素的新 Stream,而不是从 source 删除那些元素。
- 所有 Stream 的操作必须以 lambda 表达式为参数(因为所有相关操作都是高阶函数)
- 不支持索引访问
- 你可以请求第一个元素,但无法请求第二个,第三个,或最后一个。
- 很容易生成数组或者 List
- 惰性化
- 很多 Stream 操作是向后延迟的,一直到它弄清楚了最后需要多少数据才会开始。
- Intermediate 操作永远是惰性化的。
- 并行能力
- 当一个 Stream 是并行化的,就不需要再写多线程代码,所有对它的操作会自动并行进行的。
- 可以是无限的
- 集合有固定大小,Stream 则不必。limit(n) 和 findFirst() 这类的 short-circuiting 操作可以对无限的 Stream 进行运算并很快完成。