Python-车牌识别

一.车牌识别系统的用途与技术

车牌识别系统(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。

车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前最新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。

在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安局建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。

车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

二.运用Python代码完成车牌识别

1.将给定车牌圈出,并保存在文件夹中

2.将车牌中的数字和文字圈出、并保存在文件夹中

思路分析:

对图片进行一些预处理,包括灰度化、高斯平滑、中值滤波、Sobel算子边缘检测等等。

对预处理后的图像进行轮廓查找,然后根据一些RGB参数判断该轮廓是否为车牌轮廓。

import cv2

import numpy as np

image = cv2.imread('C:\\Users\\sunyu\\Desktop\\sy.jpg')

cv2.imshow("image", image)

hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

lower = np.array([110, 100, 150])

upper = np.array([125, 200, 255])

mask = cv2.inRange(hsv_img, lowerb=lower, upperb=upper)

kernel = np.ones((5,5), np.uint8)

mask = cv2.dilate(mask, kernel, iterations=10)

cv2.imshow("mask", mask)

contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

#cv2.waitKey(0)

for c in contours:

    # find bounding box coordinates

    # 现计算出一个简单的边界框

    x, y, w, h = cv2.boundingRect(c)  # 将轮廓信息转换成(x, y)坐标,并加上矩形的高度和宽度

    if w < 2*h:

        continue

    #cv2.imwrite('con'+str(index)+'.jpg', result[y:y+h, x:x+w])

    cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)  # 画出矩形

    new = image[y:y+h, x:x+w]

gray = cv2.cvtColor(new.copy(), cv2.COLOR_BGR2GRAY)          # 灰度图

ret, thresh = cv2.threshold(gray, 160, 255, cv2.THRESH_BINARY)  # 阈值分割

contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

index = 0

for c in contours:

    # find bounding box coordinates

    # 现计算出一个简单的边界框

    x, y, w, h = cv2.boundingRect(c)  # 将轮廓信息转换成(x, y)坐标,并加上矩形的高度和宽度

    if w > 40:

        continue

    index = index+1

    cv2.rectangle(new, (x, y), (x+w, y+h), (0, 255, 0), 2)  # 画出矩形

    cv2.imwrite('C:\\Users\\sunyu\\Desktop\\pi\\s' + str(index)+'.jpg',new)

cv2.imshow('new', new)

cv2.imwrite('C:\\Users\\sunyu\\Desktop\\pi\\s.jpg',new)

cv2.waitKey(0)

本代码中的图片路径根据读者情况随机应变。

三.结果展示







以上就是车牌识别代码,愿有所帮助,

不是为了优秀而优秀,不需要被别人定义,因为我有my logo。

加油!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容