HBase基础知识

目录
一. HBaes介绍
    1.1 HBase简介
    1.2 HBase的角色
        1.2.1 HMaster
        1.2.2 HRegionServer
    1.3 HBase的架构
    1.4 HBase数据模型
    1.5 HMaster
    1.6 HRegionServer

一. HBaes介绍

1.1 HBase简介

    HBase是一个分布式的、面向列的开源数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

大:上亿行、百万列

面向列:面向列(簇)的存储和权限控制,列(簇)独立检索

稀疏:对于为空(null)的列,并不占用存储空间,因此,表的设计的非常的稀疏

1.2 HBase的角色

1.2.1 HMaster
1.功能:

(1) 监控RegionServer
(2) 处理RegionServer故障转移
(3) 处理元数据的变更
(4) 处理region的分配或移除
(5) 在空闲时间进行数据的负载均衡
(6) 通过Zookeeper发布自己的位置给客户端

1.2.2、HRegionServer
1.功能:

(1) 负责存储HBase的实际数据
(2) 处理分配给它的Region
(3) 刷新缓存到HDFS
(4) 维护HLog
(5) 执行压缩
(6) 负责处理Region分片

2.组件:

(1). Write-Ahead logs
    HBase的修改记录,当对HBase读写数据的时候,数据不是直接写进磁盘,它会在内存中保留一段时间(时间以及数据量阈值,可以设定)。但把数据保存在内存中可能有更高的概率引起数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Ahead logfile的文件中,然后再写入内存中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

(2). HFile
    这是在磁盘上保存原始数据的实际的物理文件,是实际的存储文件。

(3). Store
    HFile存储在Store中,一个Store对应HBase表中的一个列簇。

(4). MemStore
    顾名思义,就是内存存储,位于内存中,用来保存当前的数据操作,所以当数据保存在WAL中之后,RegsionServer会在内存中存储键值对。

(5). Region
    Hbase表的分片,HBase表会根据RowKey值被切分成不同的region存储在RegionServer中,在一个RegionServer中可以有多个不同的region。

1.3、HBase的架构

    一个RegionServer可以包含多个HRegion,每个RegionServer维护一个HLog,和多个HFiles以及其对应的MemStore。RegionServer运行于DataNode上,数量可以与DatNode数量一致,请参考如下架构图:

HBase架构
Hbase架构2

1.4 HBase数据模型

确定一个单元格的位置(cell),需要如下四个
rowkey + Colume Family + Colume + timestamp(版本version),数据有版本的概念,即一个单元格可能有多个值,但是只有最新得一个对外显示。

  • HBase中有两张特殊的Table,-ROOT-和.META.
  • .META.:记录了用户表的Region信息,.META.可以有多个region
  • -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region
  • Zookeeper中记录了-ROOT-表的location
  • Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存,注意:在0.96版本后,Hbase移除了-ROOT-表

Row Key: 行键,Table的主键,Table中的记录默认按照Row Key升序排序

Timestamp:时间戳,每次数据操作对应的时间戳,可以看作是数据的version number

Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。

Table & Region: 当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:.

1.5 HMaster

    HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:

(1). 管理用户对Table的增、删、改、查操作

(2). 管理HRegionServer的负载均衡,调整Region分布

(3). 在Region Split后,负责新Region的分配

(4). 在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

1.6 HRegionServer

    HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

1. MemStore & StoreFiles

    HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。

2. HLog

    每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中,HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

3.文件类型

    HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

(1).HFile
    HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

(2).HLog File
    HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

4. Zookeeper中hbase的节点的存储信息:
  • rs:regionserver节点信息

  • table-lock:hbase的除meta以外的所有表

  • Table:hbase的所有的表

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • 1、基本概念 HBase是一个开源的非关系型分布式数据库(NoSQL),参考了谷歌的BIgTable建模,实现的编...
    雪飘千里阅读 1,020评论 0 2
  • 一、简介 Hbase:全名Hadoop DataBase,是一种开源的,可伸缩的,严格一致性(并非最终一致性)的分...
    菜鸟小玄阅读 2,382评论 0 12
  • 冰冻三尺非一日之寒,学习也是如此!仅为知识扫盲篇,扫盲篇啊,基础性的知识! Hbase角色 HMaster 功能:...
    李小李的路阅读 1,808评论 0 6
  • Hbase是什么? 其源于 Google 三大论文之一的 bigtable ,是一个具有高可靠性、高性能、面向列、...
    code_solve阅读 747评论 0 5
  • 烟 文/慧心 夜色的深沉 没有撩起你睡眠的欲望 一支烟 在黑暗里燃烧, 你吞吐着往事,沉默 眼睛里有我不曾读懂的故...
    Sx慧心阅读 284评论 4 7