Easy
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22
,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
自己写的比较繁琐复杂, 思路是记录每一条从根节点到叶节点的路径,直到到达叶节点,才计算整条路径的root to leaf的sum. 如果有sum == target,则直接返回true. 如果没有遇到,则继续用DFS搜索左右子树,期间用到backtracking。左右子树只要有一条路径满足条件就返回true.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
List<Integer> path = new ArrayList<>();
return helper(root, sum, path);
}
private boolean helper(TreeNode root, int target, List<Integer> path){
if (root == null){
return false;
}
path.add(root.val);
int sum = 0;
if (root.left == null && root.right == null){
for (int i = 0; i < path.size(); i++){
sum += path.get(i);
}
if (sum == target){
return true;
}
}
path.remove(path.size() - 1);
return helper(root.left, target, path) || helper(root.right, target, path);
}
}
精简之后可以写成:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null){
return false;
}
if (root.left == null && root.right == null){
return root.val == sum;
}
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}
}