R for data science || 使用magrittr进行管道操作

magrittr包被定义为一个高效的管道操作工具包,通过管道的连接方式,让数据或表达式的传递更高效,使用操作符%>%,可以直接把数据传递给下一个函数调用或表达式。magrittr包的主要目标有2个,第一是减少代码开发时间,提高代码的可读性和维护性;第二是让你的代码更短,再短,短短短…

magrittr包,主要定义了4个管道操作符,分另是%>%, %T>%, %$% 和 %<>%。其中,操作符%>%是最常用的,其他3个操作符,与%>%类似,在特殊的使用场景会起到更好的作用。当正确掌握这几个操作符后,你一定会爱不释手的,快去把所有的代码都重构吧,砍掉原来大段冗长的代码是一件多么令人激动的事情啊。

magrittr的项目主页:https://github.com/smbache/magrittr

不使用管道会怎样
library(magrittr)

foo_foo_1 <- hop(foo_foo, through = forest)
foo_foo_2 <- scoop(foo_foo_1, up = field_mice)
foo_foo_3 <- bop(foo_foo_2, on = head)
  • 不必要的中间变量
  • 每次修改要做很多次
diamonds <- ggplot2::diamonds
diamonds2 <- diamonds %>% 
  dplyr::mutate(price_per_carat = price / carat)

pryr::object_size(diamonds)
#> 3.46 MB
pryr::object_size(diamonds2)
#> 3.89 MB
pryr::object_size(diamonds, diamonds2)
#> 3.89 MB

重写初始对象

foo_foo <- hop(foo_foo, through = forest)
foo_foo <- scoop(foo_foo, up = field_mice)
foo_foo <- bop(foo_foo, on = head)
  • 不利于调试
  • 对象的多次重写

函数组合

bop(
  scoop(
    hop(foo_foo, through = forest),
    up = field_mice
  ), 
  on = head
)
使用管道
foo_foo %>%
  hop(through = forest) %>%
  scoop(up = field_mice) %>%
  bop(on = head)

原理:

my_pipe <- function(.) {
  . <- hop(., through = forest)
  . <- scoop(., up = field_mice)
  bop(., on = head)
}
my_pipe(foo_foo)
不适用管道的情况
  • Your pipes are longer than (say) ten steps. In that case, create intermediate objects with meaningful names. That will make debugging easier, because you can more easily check the intermediate results, and it makes it easier to understand your code, because the variable names can help communicate intent.

  • You have multiple inputs or outputs. If there isn’t one primary object being transformed, but two or more objects being combined together, don’t use the pipe.

  • You are starting to think about a directed graph with a complex dependency structure. **Pipes are fundamentally linear **and expressing complex relationships with them will typically yield confusing code.

magrittr 中的其他工具
rnorm(100) %>%
  matrix(ncol = 2) %>%
  plot() %>%
  str()
#>  NULL

rnorm(100) %>%
  matrix(ncol = 2) %T>%
  plot() %>%
  str()
#>  num [1:50, 1:2] -0.387 -0.785 -1.057 -0.796 -1.756 ...

head(mtcars )
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1



mtcars %$%
  cor(disp, mpg)
#> [1] -0.848
> mtcars <- mtcars %>% 
+   transform(cyl = cyl * 2)
> head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0  48  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0  48  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8  32  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4  48  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7  64  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1  48  225 105 2.76 3.460 20.22  1  0    3    1
> 
> mtcars %<>% transform(cyl = cyl * 2)
> head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0  96  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0  96  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8  64  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4  96  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7 128  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1  96  225 105 2.76 3.460 20.22  1  0    3    1
> 

r4ds
R语言高效的管道操作magrittr

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容