利用Python进行录音和音频分析

pyaudio简介

Python有个很强大的处理音频的库pyqudio, 使用pyaudio库可以进行录音,播放,生成wav文件等等。更多介绍可以查阅官方文档

pyaudio安装

各平台安装方法
windows平台下直接使用pip安装即可:pip install pyqudio

录音

import wave
import pyaudio

# 定义数据流块
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 2
RATE = 44100
# 录音时间
RECORD_SECONDS = 5
# 要写入的文件名
WAVE_OUTPUT_FILENAME = "output.wav"
# 创建PyAudio对象
p = pyaudio.PyAudio()

# 打开数据流
stream = p.open(format=FORMAT,
                channels=CHANNELS,
                rate=RATE,
                input=True,
                frames_per_buffer=CHUNK)

print("* recording")

# 开始录音
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
    data = stream.read(CHUNK)
    frames.append(data)

print("* done recording")

# 停止数据流
stream.stop_stream()
stream.close()

# 关闭PyAudio
p.terminate()

# 写入录音文件
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()

这里设置的录音时间是5秒,运行后结果如下:

recording

音频分析

import wave
import numpy
from pyaudio import PyAudio
import matplotlib.pyplot as plt

# 只读方式打开WAV文件
wf = wave.open('./output.wav', 'rb')
# 创建PyAudio对象
p = PyAudio()
stream = p.open(format = p.get_format_from_width(wf.getsampwidth()),
    channels = wf.getnchannels(),
    rate = wf.getframerate(),
    output = True)
nframes = wf.getnframes()
framerate = wf.getframerate()

# 读取完整的帧数据到str_data中,这是一个string类型的数据
str_data = wf.readframes(nframes)
wf.close()

# 将波形数据转换成数组
wave_data = numpy.fromstring(str_data, dtype=numpy.short)
# 将wave_data数组改为2列,行数自动匹配
wave_data.shape = -1,2
# 将数组转置
wave_data = wave_data.T

def time_plt():
    # time也是一个数组,与wave_data[0]或wave_data[1]配对形成系列点坐标
    time = numpy.arange(0, nframes)*(1.0/framerate)
    # 绘制波形图
    plt.subplot(211)
    plt.plot(time, wave_data[0], c='r')
    plt.subplot(212)
    plt.plot(time, wave_data[1], c='g')
    plt.xlabel('time (seconds)')
    plt.show()

def freq():
    # 采样点数,修改采样点数和起始位置进行不同位置和长度的音频波形分析
    N = 44100
    start = 0  # 开始采样位置
    df = framerate/(N-1)  # 分辨率
    freq = [df*n for n in range(0, N)]  # N个元素
    wave_data2 = wave_data[0][start:start+N]
    c = numpy.fft.fft(wave_data2)*2/N
    # 常规显示采样频率一半的频谱
    d = int(len(c)/2)
    # 仅显示频率在4000以下的频谱
    while freq[d] > 4000:
        d -= 10
    plt.plot(freq[:d-1], abs(c[:d-1]), 'r')
    plt.show()

def main():
    time_plt()
    freq()

if __name__ == '__main__':
    main()

代码中的注释比较详细,这里我录了等间隔按顺序念的 “1,2,3,4”。

先读取刚刚录制的wav文件,频谱分析中利用numpy包进行FFT(快速傅里叶变换)处理,最后利用matplotlib库进行绘图,依次绘制了波形图和频谱图。

波形图如下:


频谱图如下:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • 1、通过CocoaPods安装项目名称项目信息 AFNetworking网络请求组件 FMDB本地数据库组件 SD...
    阳明先生_X自主阅读 15,980评论 3 119
  • 读一部优秀小说就像当一回上帝,好的作家,会让读者犹如坐在云端,俯瞰世间一般,从上帝的视角,审视每个人物在书中演绎自...
    马小尕阅读 788评论 0 0