深度学习入门(5)【深度学习实战】无框架实现两层神经网络的搭建与训练过程

之前文章《深度学习入门(4)神经网络参数的训练方式》主要介绍神经网络中的参数梯度是如何计算的。本文将直接使用之前公众号介绍过损失函数激活函数以及梯度计算直接手动实现一个两层的神经网络训练过程。

也许有人会说使用pytorch或者tensorflow框架,几行代码就可以搭建一个神经网络,为什么要自己手动去实现呢?我觉得使用现成框架确实很容易搭建一个神经网络,但是对于其中的计算原理如果不了解的话,那始终只会停在使用框架的基础上,如果能够自己亲手去了解其中的工作原理,手动去实现一下,也许能够对其有更深刻的理解,这也能够为后续自己去更好的优化一个神经网络提供基础。

本文将介绍一个两层神经网络的搭建过程,并且以手写体数字集Mnist对所搭建的神经网络进行训练。

神经网络的训练过程

训练过程.png

训练过程2.png

神经网络的学习按照上面4个步骤进行。这个方法通过梯度下降法更新参数,不过因为这里使用的数据是随机选择的mini batch数据,所以又称为随机梯度下降法( stochastic gradient descent)---SGD。“随机”指的是“随机选择的”的意思,因此,随机梯度下降法是“对随机选择的数据进行的梯度下降法”。深度学习的很多框架中,随机梯度下降法一般由一个名为SGD的函数来实现。SGD来源于随机梯度下降法的英文名称的首字母。

构建辅助函数

首先我们先将之前文章中的损失函数、激活函数以及梯度计算的代码给弄过来,用于辅助神经网络的构建。如果对于这几个函数不太清楚可以点击相应链接,看之前写过的文章。

def sigmoid(x):
    # sigmoid激活函数
    return 1 / (1 + np.exp(-x))

def sigmoid_grad(x):
    # 计算sigmoid激活函数的梯度
    return (1.0 - sigmoid(x)) * sigmoid(x)

def softmax(x):
    # softmax激活函数,用于输出层
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x) # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))

def cross_entropy_error(y, t):
    # 损失函数使用交叉熵函数
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


def numerical_gradient(f, x):
    # 计算损失函数f的参数x的梯度
    h = 1e-4  # 0.0001
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()
    return grad

二层神经网络的搭建

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        # 初始化权重
        self.params = {}
        # 先用高斯分布进行权重参数的初始化,然后对其进行训练
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

    def predict(self, x):
        # 对输入x进行预测,并输出预测值y
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
    
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        return y
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        # 使用交叉熵误差作为目标损失函数
        return cross_entropy_error(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        # 使用数值微分来计算梯度
        # loss_W为损失函数
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        # 计算各个参数的梯度
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])

        return grads
        
    def gradient(self, x, t):
        # 使用误差的反向传播来计算梯度
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
        grads = {}
        
        batch_num = x.shape[0]
        
        # forward
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        # backward
        dy = (y - t) / batch_num
        grads['W2'] = np.dot(z1.T, dy)
        grads['b2'] = np.sum(dy, axis=0)
        
        da1 = np.dot(dy, W2.T)
        dz1 = sigmoid_grad(a1) * da1
        grads['W1'] = np.dot(x.T, dz1)
        grads['b1'] = np.sum(dz1, axis=0)

        return grads

各个参数说明如下:

参数说明1.png

参数说明2.png

该代码中包含两种参数梯度的计算方式numerical_gradientgradient,其中numerical_gradient是使用的之前文章讲过的数值微分的方式计算参数梯度值的,而gradient则是使用的误差的反向传播来计算梯度值的,这种计算方式比微分方式计算梯度值更加快速。因此,在使用神经网络梯度计算通常会使用误差的反向传播来计算梯度。这个后续文章会进行详细讲解。

神经网络的训练

以上两层的神将网络已经搭建好了,下面我们以经典的手写体数字识别mnist数字集,使用上述神经网络进行训练,过程如下:

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)
x_train = x_train[:5000] #仅选择前5000个数据进行训练测试
x_test = x_test[:5000]


train_loss_list = [] # 记录误差的变化情况
# 超参数
iters_num = 6000  # 设定迭代的次数
train_size = x_train.shape[0]
batch_size = 100 # 每一批取100个样本
learning_rate = 0.1

# 设置输入层784, 隐藏层50,层50
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

iter_per_epoch = max(train_size / batch_size, 1)

for i in range(iters_num):
    # 获取mini-batch
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]

    # 计算梯度
    #数值方式计算梯度
    # grad = network.net_numerical_gradient(x_batch, t_batch) 
    # 误差的反向传播方式计算梯度
    grad = network.gradient(x_batch, t_batch)

    # 通过梯度更新每组参数
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]

    # 记录学习过程
    loss = network.loss(x_batch, t_batch)
    train_loss_list.append(loss)

    if i % iter_per_epoch == 0:
        print("train loss," + str(loss))

# 将每一步训练的结果得到的损失函数值打印出来
x = np.arange(len(train_loss_list))
plt.plot(x, train_loss_list, label='train loss')
plt.xlabel("iteration")
plt.ylabel("loss")
plt.show()

上述得到损失函数值随训练的推移如下:

损失函数的结果.png

由上图可以发现随着学习的进行,损失函数的值在不断减小。说明神经网络的权重参数在逐渐拟合数据,并逐渐向最优参数靠近。
然后使用训练得到的神经网络,即可对未知的数据集进行预测。下一篇文章会介绍对神经网络的评估过程。
如果喜欢本文,欢迎点赞 并 关注作者,后续将会不断更新干货文章,以供大家共同学习交流,谢谢!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容