跟着Nature学作图:R语言ggplot2频率分布直方图和散点图添加误差线

论文

A saturated map of common genetic variants associated with human height

https://www.nature.com/articles/s41586-022-05275-y

s41586-022-05275-y.pdf

代码没有公开,但是作图数据基本都公开了,争取把每个图都重复一遍

今天的推文重复论文中的extended Figure4 频率分布直方图和散点图添加误差线

首先是图a频率分布直方图

library(readxl)
dat<-read_excel("extendFig4.xlsx",
                sheet = "Panel a")
dat

colnames(dat)<-"Var1"
library(ggplot2)
library(ggh4x)


ggplot(data=dat,aes(x=Var1))+
  geom_histogram(bins = 25,
                 color="white",
                 fill="#aadbe9")+
  scale_x_continuous(limits = c(0.5,3),
                     breaks = seq(0.5,3,by=0.5))+
  scale_y_continuous(limits = c(0,300),
                     breaks = seq(0,300,50))+
  geom_vline(xintercept = 0.75,lty="dashed",color="#aadbe9")+
  geom_vline(xintercept = 2.25,lty="dashed",color="#aadbe9")+
  geom_segment(aes(x=2.5,xend=2.5,y=50,yend=0),
               arrow = arrow(),
               color="red")+
  annotate(geom = "text",x=2.5,y=50,label="Observed",
           vjust=-1)+
  geom_segment(aes(x=0.75,xend=2.25,y=250,yend=250),
               arrow = arrow(ends = "both",
                             angle=20,
                             length = unit(3,'mm')),
               color="#aadbe9")+
  annotate(geom = "text",x=1.5,y=250,
           label="Null distribution (1,000 draws)",
           vjust=-1)+
  theme_classic()+
  guides(x=guide_axis_truncated(trunc_lower = 0.5,
                                trunc_upper = 3),
         y=guide_axis_truncated(trunc_lower = 0,
                                trunc_upper = 300))+
  labs(y="Frequency",
       x="Enrichment folde of OMIM genes\nnear GWS SNPs with a density > 1")

image.png

第二个图b

datb<-read_excel("extendFig4.xlsx",
                sheet = "Panel b")
datb
ggplot(data=datb,aes(x=`Minimum Signal Density`,
                     y=`Enrichment statistic`))+
  geom_point()+
  geom_errorbar(aes(ymin=`Enrichment statistic`-`Standard Error of Enrichment Statistic`,
                    ymax=`Enrichment statistic`+`Standard Error of Enrichment Statistic`),
                width=0.4)+
  scale_x_continuous(limits = c(0.5,10.5),
                     breaks = 1:10)+
  scale_y_continuous(limits = c(0,9),
                     breaks = 0:8)+
  theme_classic()+
  guides(x=guide_axis_truncated(trunc_lower = 1,
                                trunc_upper = 10),
         y=guide_axis_truncated(trunc_lower = 0,
                                trunc_upper = 8))+
  labs(x="Minimum Signal Density",
       y="Enrichment-fold of OMIM genes\nnear GWS SNPs")
image.png

最后是拼图

library(patchwork)
p1+p2
image.png

示例数据和代码可以给公众号推文点赞,点击在看,最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容