时间序列分解

1、时间序列分解

1.1 时间序列的组成部分

一个时间序列往往是一下几类变化形式的叠加或耦合:长期趋势(Secular trend,T),季节变动(Seasonal Variation,S),循环波动(Cyclical Variation,C),不规则波动(Irregular Variation,I):

长期趋势T
长期趋势指现象在较长时期内持续发展变化的一种趋向或状态。

季节波动S
季节波动是由于季节的变化引起的现象发展水平的规则变动

循环波动C
循环波动指以若干年为期限,不具严格规则的周期性连续变动

不规则波动I
不规则波动指由于众多偶然因素对时间序列造成的影响

1.2 时间序列分解模型

加法模型

加法模型的形式如下:

加法模型中的四种成分之间是相互独立的,某种成分的变动并不影响其他成分的变动。各个成分都用绝对量表示,并且具有相同的量纲。

乘法模型

乘法模型的形式如下:

乘法模型中四种成分之间保持着相互依存的关系,一般而言,长期趋势用绝对量表示,具有和时间序列本身相同的量纲,其他成分则用相对量表示。

加乘混合模型

1.3 时间序列的长期趋势分析

移动平均法
在原时间序列内依次求连续若干期的平均数作为其某一期的趋势值,如此逐项递移求得一系列的移动平均数,形成一个平均数时间序列。计算方式如下:

中心化移动平均

如果N为奇数,则把N期的移动平均值作为中间一期的趋势值。

如果N为偶数,则将移动平均数再进行一次两项移动平均。

化简得到:

时间回归法
使用回归分析中的最小二乘法,以时间t或t的函数为自变量拟合趋势方程。常用的趋势方程如下:

1.4 时间序列季节变动分析

乘法模型-季节指数
乘法模型中的季节成分通过季节指数来反映。常用的方法称为移动平均趋势剔除法。步骤如下:

举个例子,假设我们的数据如下:

计算过程如下:

季节调整后的序列为:

1.4 时间序列循环变动分析

通常通过剩余法来计算循环变动成分C:

  1. 如果有季节成分,计算季节指数,得到季节调整后的数据TCI
  2. 根据趋势方程从季节调整后的数据中消除长期趋势,得到序列CI
  3. 对消去季节成分和趋势值的序列CI进行移动平均以消除不规则波动 ,得到循环变动成分C

上面的例子中循环变动成分的计算过程如下:

1.5 时间序列不规则变动分析

如有需要,可以进一步分解出不规则变动成分:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容