时隔一年再做搜索题时遇到的第一题。
问题描述
在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来。现在,Tom在第S号城市,他有张该国地图,他想知道如果自己要去参观第T号城市,必须经过的前一个城市是几号城市(假设你不走重复的路)。
输入
第一行输入一个整数M表示测试数据共有M(1<=M<=5)组
每组测试数据的第一行输入一个正整数N(1<=N<=100000)和一个正整数S(1<=S<=100000),N表示城市的总个数,S表示参观者所在城市的编号
随后的N-1行,每行有两个正整数a,b(1<=a,b<=N),表示第a号城市和第b号城市之间有一条路连通。
输出
每组测试数据输N个正整数,其中,第i个数表示从S走到i号城市,必须要经过的上一个城市的编号。(其中i=S时,请输出-1)
样例输入
1
10 1
1 9
1 8
8 10
10 3
8 6
1 2
10 4
9 5
3 7
样例输出
-1 1 10 10 9 8 3 1 1 8
分析
直接开数组 map[1000000][1000000],可能会不过,用到了vector,利用其不定长。
头文件 #include<vector>
vector<int>a 就是一个不定长数组,类似于int a[]的整数数组,只不过他的长度不确定,可以用a.size()读取他的长度。
vector<int>a[max] 就是一个二维数组,只是第一维的大小是固定的(不超过max),二维的大小就不固定了.
尾部插入数字:vec.push_back(a);
刚开始看了网上代码也没懂,后来自己拿测试样例走了一遍才明白。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
int M,N,S;
vector<int>map[100005]; //记录连通信息
int pre[100005]; //记录每个节点的父亲节点
int a,b;
void dfs(int x){
for(int i=0; i<map[x].size(); i++){ //搜索所有与x相连的城市,即x的子节点
if(pre[map[x][i]]) //如果这个节点的pre已经被赋值,即已经找到父亲节点,就跳过,去找x的下一个子节点。
continue;
else{ //还没赋值,即还没找到父亲节点
pre[map[x][i]] = x; //x就是这个节点的父亲节点,因为是按照树的顺序依次乡下搜索的
dfs(map[x][i]); //在我找个子节点的子节点
}
}
}
int main()
{
scanf("%d",&M);
while(M--){
memset(map, 0, sizeof(map));
memset(pre, 0, sizeof(pre));
scanf("%d%d",&N,&S);
for(int i=0; i<N-1; i++){
scanf("%d%d",&a, &b);
map[a].push_back(b); //在 a 的连通城市中加上 b
map[b].push_back(a); //在 b 的连通城市中加上 a
}
pre[S] = -1; //当前的起始城市没有父亲节点(因为是以他为最上方根节点构造树的)
dfs(S); //从当前城市开始搜索,为每个节点寻找父亲节点
for(int i=1; i<=N; i++) //打印每个节点的父亲节点,即从 S 到每个城市毕竟的上一个城市
cout<<pre[i]<<" ";
}
return 0;
}