10 | 排序(下):如何用快排思想在O(n)内查找第K大元素?

一、分治思想

1.分治思想:分治,顾明思意,就是分而治之,将一个大问题分解成小的子问题来解决,小的子问题解决了,大问题也就解决了。

2.分治与递归的区别:分治算法一般都用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧。

二、归并排序

1.算法原理

image.png

      先把数组从中间分成前后两部分,然后对前后两部分分别进行排序,再将排序好的两部分合并到一起,这样整个数组就有序了。这就是归并排序的核心思想。如何用递归实现归并排序呢?写递归代码的技巧就是分写得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。递推公式怎么写?如下

递推公式:merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))
终止条件:p >= r 不用再继续分解

2.代码实现

image.png
// 归并排序
const mergeArr = (left, right) => {
    let temp = []
    let leftIndex = 0
    let rightIndex = 0
    // 判断2个数组中元素大小,依次插入数组
    while (left.length > leftIndex && right.length > rightIndex) {
        if (left[leftIndex] <= right[rightIndex]) {
            temp.push(left[leftIndex])
            leftIndex++
        } else {
            temp.push(right[rightIndex])
            rightIndex++
        }
    }
    // 合并 多余数组
    return temp.concat(left.slice(leftIndex)).concat(right.slice(rightIndex))
}

const mergeSort = (arr) => {
    // 当任意数组分解到只有一个时返回。
    if (arr.length <= 1) return arr
    const middle = Math.floor(arr.length / 2) // 找到中间值
    const left = arr.slice(0, middle) // 分割数组
    const right = arr.slice(middle)
    // 递归 分解 合并
    return mergeArr(mergeSort(left), mergeSort(right))
}

const res = mergeSort([3,1,5,4,0])
console.log(res)

3.性能分析

1)算法稳定性:

      归并排序稳不稳定关键要看merge()函数,也就是两个子数组合并成一个有序数组的那部分代码。在合并的过程中,如果 A[p…q] 和 A[q+1…r] 之间有值相同的元素,那我们就可以像伪代码中那样,先把 A[p…q] 中的元素放入tmp数组,这样 就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一种稳定排序算法。

2)时间复杂度:分析归并排序的时间复杂度就是分析递归代码的时间复杂度

      如何分析递归代码的时间复杂度?
      递归的适用场景是一个问题a可以分解为多个子问题b、c,那求解问题a就可以分解为求解问题b、c。问题b、c解决之后,我们再把b、c的结果合并成a的结果。若定义求解问题a的时间是T(a),则求解问题b、c的时间分别是T(b)和T(c),那就可以得到这样的递推公式:T(a) = T(b) + T(c) + K,其中K等于将两个子问题b、c的结果合并成问题a的结果所消耗的时间。这里有一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。套用这个公式,那么归并排序的时间复杂度就可以表示为:
T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2T(n/2) + n; n>1,其中n就是merge()函数合并两个子数组的的时间复杂度O(n)。
T(n) = 2
T(n/2) + n
= 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n
= 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n
= 8
(2T(n/16) + n/8) + 3n = 16T(n/16) + 4n
......
= 2^k * T(n/2^k) + k * n
......
      当T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到k=log2n。将k带入上面的公式就得到T(n)=Cn+nlog2n。如用大O表示法,T(n)就等于O(nlogn)。所以,归并排序的是复杂度时间复杂度就是O(nlogn)。

3)空间复杂度:归并排序算法不是原地排序算法,空间复杂度是O(n)

      为什么?因为归并排序的合并函数,在合并两个数组为一个有序数组时,需要借助额外的存储空间。为什么空间复杂度是O(n)而不是O(nlogn)呢?如果我们按照分析递归的时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是O(nlogn),但这种分析思路是有问题的!因为,在实际上,递归代码的空间复杂度并不是像时间复杂度那样累加,而是这样的过程,即在每次合并过程中都需要申请额外的内存空间,但是合并完成后,临时开辟的内存空间就被释放掉了,在任意时刻,CPU只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时空间再大也不会超过n个数据的大小,所以空间复杂度是O(n)。

三、快速排序

1.算法原理

      快排的思想是这样的:如果要排序数组中下标从p到r之间的一组数据,我们选择p到r之间的任意一个数据作为pivot(分区点)。然后遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放到右边,将povit放到中间。经过这一步之后,数组p到r之间的数据就分成了3部分,前面p到q-1之间都是小于povit的,中间是povit,后面的q+1到r之间是大于povit的。根据分治、递归的处理思想,我们可以用递归排序下标从p到q-1之间的数据和下标从q+1到r之间的数据,直到区间缩小为1,就说明所有的数据都有序了。

递推公式:quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
终止条件:p >= r

2.代码实现


var quickSort = function(arr) {
    if (arr.length <= 1) {//如果数组长度小于等于1无需判断直接返回即可 
        return arr;
    }
    //取基准点 
    var pivotIndex = Math.floor(arr.length / 2)
    //取基准点的值,splice(index,1)函数可以返回数组中被删除的那个数
    var pivot = arr.splice(pivotIndex, 1)[0];
    var left = [];//存放比基准点小的数组
    var right = [];//存放比基准点大的数组 
    for (var i = 0; i < arr.length; i++){ //遍历数组,进行判断分配 
      if (arr[i] < pivot) {
        left.push(arr[i]);//比基准点小的放在左边数组 
      } else {
        right.push(arr[i]);//比基准点大的放在右边数组 
      }
    }
    //递归执行以上操作,对左右两个数组进行操作,直到数组长度为<=1; 
    return quickSort(left).concat([pivot], quickSort(right));
};

console.log(quickSort([5,8,3,6,9,4]))

3.性能分析

1)算法稳定性:

      因为分区过程中涉及交换操作,如果数组中有两个8,其中一个是pivot,经过分区处理后,后面的8就有可能放到了另一个8的前面,先后顺序就颠倒了,所以快速排序是不稳定的排序算法。比如数组[1,2,3,9,8,11,8],取后面的8作为pivot,那么分区后就会将后面的8与9进行交换。

2)时间复杂度:最好、最坏、平均情况

      快排也是用递归实现的,所以时间复杂度也可以用递推公式表示。
如果每次分区操作都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并的相同。
T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2*T(n/2) + n; n>1
      所以,快排的时间复杂度也是O(nlogn)。
      如果数组中的元素原来已经有序了,比如1,3,5,6,8,若每次选择最后一个元素作为pivot,那每次分区得到的两个区间都是不均等的,需要进行大约n次的分区,才能完成整个快排过程,而每次分区我们平均要扫描大约n/2个元素,这种情况下,快排的时间复杂度就是O(n^2)。
前面两种情况,一个是分区及其均衡,一个是分区极不均衡,它们分别对应了快排的最好情况时间复杂度和最坏情况时间复杂度。那快排的平均时间复杂度是多少呢?T(n)大部分情况下是O(nlogn),只有在极端情况下才是退化到O(n^2),而且我们也有很多方法将这个概率降低。

3)空间复杂度:快排是一种原地排序算法,空间复杂度是O(1)

四、归并排序与快速排序的区别

      归并和快排用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢?
      1.归并排序,是先递归调用,再进行合并,合并的时候进行数据的交换。所以它是自下而上的排序方式。何为自下而上?就是先解决子问题,再解决父问题。

      2.快速排序,是先分区,在递归调用,分区的时候进行数据的交换。所以它是自上而下的排序方式。何为自上而下?就是先解决父问题,再解决子问题。

五、思考

      1.O(n)时间复杂度内求无序数组中第K大元素,比如4,2,5,12,3这样一组数据,第3大元素是4。
我们选择数组区间A[0...n-1]的最后一个元素作为pivot,对数组A[0...n-1]进行原地分区,这样数组就分成了3部分,A[0...p-1]、A[p]、A[p+1...n-1]。

      如果p+1=K,那A[p]就是要求解的元素;如果K>p+1,说明第K大元素出现在A[p+1...n-1]区间,我们按照上面的思路递归地在A[p+1...n-1]这个区间查找。同理,如果K<p+1,那我们就在A[0...p-1]区间查找。
时间复杂度分析?

      第一次分区查找,我们需要对大小为n的数组进行分区操作,需要遍历n个元素。第二次分区查找,我们需要对大小为n/2的数组执行分区操作,需要遍历n/2个元素。依次类推,分区遍历元素的个数分别为n、n/2、n/4、n/8、n/16......直到区间缩小为1。如果把每次分区遍历的元素个数累加起来,就是等比数列求和,结果为2n-1。所以,上述解决问题的思路为O(n)。

      2.有10个访问日志文件,每个日志文件大小约为300MB,每个文件里的日志都是按照时间戳从小到大排序的。现在需要将这10个较小的日志文件合并为1个日志文件,合并之后的日志仍然按照时间戳从小到大排列。如果处理上述任务的机器内存只有1GB,你有什么好的解决思路能快速地将这10个日志文件合并?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351