Miller-Rabin素数测试

费马小定理:对于素数p和任意整数a,有ap ≡ a(mod p)(同余)。反过来,满足ap ≡ a(mod p),p也几乎一定是素数。
伪素数:如果n是一个正整数,如果存在和n互素的正整数a满足 an-1 ≡ 1(mod n),我们说n是基于a的伪素数。如果一个数是伪素数,那么它几乎肯定是素数。
Miller-Rabin测试:不断选取不超过n-1的基b(s次),计算是否每次都有bn-1 ≡ 1(mod n),若每次都成立则n是素数,否则为合数。

Function Miller-Rabin (n : longint) :boolean;
begin
    for i := 1 to s do
    begin
        a := random(n - 2) + 2;
        if mod_exp(a, n-1, n) <> 1 then return false;
    end;
    return true;
end;
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容