AQS源码分析

做开发也有几年了, 对1.5的concurrent并发包了解并不是很深入, 近来正好有空做个深入的学习

基础

在看 AQS 源码之前, 需要对下面的知识点有个大致的了解, 看源码会快很多

  1. Unsafe 相关, 主要是 CAS 原子锁
  2. CLH 锁
  3. 管程模型

Unsafe CAS原子锁

CAS原子锁是基于CPU的原子指令 compareAndSet 实现的命令, 该操作是原子的, 要么成功要么失败

CLH 锁

  1. CLH是一种基于队列的自旋锁
  2. 过来获取锁的线程全部排排队
  3. 只有排在第一个的线程才有执行权
  4. 其他的线程自旋判断排在前面一个节点的状态值, 不是允许执行状态则一直自旋等待

管程模型

  1. 管程模型是实现线程同步锁的一种方式, synchronized 的实现模式其实也是这个
  2. 管程主要的组成部分是: 多线程共享资源, 限制并发的进入队列, 不满足执行条件的等待队列和一些出队, 入队的方法
  3. 进入管程需要先判断是否有执行条件, 没有则在进入队列中等待
  4. 进入管程后, 不满足执行条件后, 进入等待队列等待
  5. 执行完后离开管程

代码分析

源码做了详细的注释

/**
 * 该处存在两个队列 <br>
 * 同步队列 : 争抢不到锁的线程进入同步队列<br>
 * 条件队列 : 不满足继续运行条件的await后进入条件队列
 *
 */
@SuppressWarnings("restriction")
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
    private static final long serialVersionUID = 7373984972572414691L;

    protected AbstractQueuedSynchronizer() {
    }

    /**
     * 条件队列和同步队列的节点类
     */
    static final class Node {
        // 标记节点在共享模式下等待
        static final Node SHARED = new Node();
        // 标记节点在排他模式下等待
        static final Node EXCLUSIVE = null;

        // 状态值, 表示线程已经取消了, 线程超时或者被中断
        static final int CANCELLED = 1;
        // 节点还有一个中间状态值0, 为0是空白状态, 后面的节点也未进入park
        // 状态值, 表示后续节点需要被唤醒
        static final int SIGNAL = -1;
        // 状态值, 表示线程在条件队列中, 即Condition队列, 调用Condition.await()后进入该状态值
        static final int CONDITION = -2;
        // 状态值, 表示一下个acquireShared应该是无条件传播
        static final int PROPAGATE = -3;

        // 节点的等待状态值
        volatile int waitStatus;

        // Lock.lock()获取不到锁的线程进入同步队列
        // 同步队列中当前节点的前面的节点
        volatile Node prev;
        // 同步队列中当前节点的下一个节点
        volatile Node next;

        // 当前节点的线程
        volatile Thread thread;

        // 维持Condition条件队列的属性
        // Condition.await() 等待队列中的下一个等待节点, 节点在CONDITION状态下
        Node nextWaiter;

        // 判断节点是否在共享模式下
        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        // 获取前置节点
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {
        }

        Node(Thread thread, Node mode) { // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

    // 同步队列的头节点, 不为空时该节点的状态不能是CANCELLED
    private transient volatile Node head;
    // 同步队列的尾部节点, 只能通过enq添加一个新的同步节点
    private transient volatile Node tail;

    // 线程进入同步器的次数
    // state>0 说明同步锁已经被某个线程线程拿了
    private volatile int state;

    // 获取重入次数
    protected final int getState() {
        return state;
    }

    // 设置重入次数
    protected final void setState(int newState) {
        state = newState;
    }

    // 设置重入次数
    protected final boolean compareAndSetState(int expect, int update) {
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

    // Queuing utilities

    // 线程自旋时间
    // > spinForTimeoutThreshold线程才会被park
    // < spinForTimeoutThreshold的将自旋
    static final long spinForTimeoutThreshold = 1000L;

    /**
     * for循环强制将节点插入同步队列的尾部
     * 
     * @param 待插入的node
     * @return 插入前的tail
     */
    private Node enq(final Node node) {
        // 因为存在并发, 需要循环执行, 直到当前把当前线程作为节点追加到同步队列尾部
        for (;;) {// 循环直到将当前节点放置到等待队伍尾部
            Node t = tail;
            if (t == null) { // 尾结点为null, 表示等待队列没有节点, 需要创建一个虚节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;// node.prev=tail
                if (compareAndSetTail(t, node)) {// 设置当前节点为尾节点
                    t.next = node;// tail.next = node
                    return t;
                }
            }
        }
    }

    /**
     * 创建线程节点, 并且添加到同步队列尾部
     *
     * @param mode 同步模式 Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return 新创建的节点
     */
    private Node addWaiter(Node mode) {
        // 创建当前线程的等待节点
        Node node = new Node(Thread.currentThread(), mode);
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            // 该处存在并发, 需要进行原子操作
            if (compareAndSetTail(pred, node)) {// 尝试将当前节点放置到等待队伍末尾
                pred.next = node;
                return node;
            }
        }
        enq(node);// 上面尝试失败, 执行下面的强制放入
        return node;
    }

    // 设置头节点
    private void setHead(Node node) {
        head = node;
        // 用不着的属性全部设置为null
        node.thread = null;// help GC
        node.prev = null;
    }

    /**
     * 唤醒同步队列中的后续节点<br>
     *
     * @param node the node
     */
    private void unparkSuccessor(Node node) {
        // 设置当前节点的等待状态值为0
        int ws = node.waitStatus;
        if (ws < 0)// 如果节点状态<0, 将当前等待状态设置为0
            compareAndSetWaitStatus(node, ws, 0);// waitStatus==0, 表示当前线程即将完成, 需要唤醒后面的节点

        // unpark下一个节点, 如果下一个节点cancelled或者不存在则继续解锁下面的节点
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {// 找个下一个没有Canceled的节点, 然后唤醒
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);// 唤醒
    }

    /**
     * 共享模式下释放锁
     */
    private void doReleaseShared() {
        // 循环解锁头节点线程, 被解锁的线程将离开等待队列, 新的头节点将会别代替
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {// 如果节点状态是唤醒
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue; // 状态设置失败再次设置状态值0
                    unparkSuccessor(h);// 设置成功后唤醒后续节点
                } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue; // loop on failed CAS
            }
            if (h == head) // loop if head changed
                break;
        }
    }

    /**
     * 设置头节点然后传播
     * 
     * @param node
     * @param propagate
     */
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);

        // 传播
        if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }

    // Utilities for various versions of acquire

    /**
     * 取消正在进行的获取请求 <br>
     * <ol>
     * <li>删除当前节点</li>
     * <li>设置后面节点的状态值SIGNAL或者唤醒后续节点</li>
     * </ol>
     *
     * @param node the node
     */
    private void cancelAcquire(Node node) {
        if (node == null)
            return;

        // 节点的线程设置为null
        node.thread = null;

        // Skip cancelled 所有的前置节点
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        // waitState不为canceled的第一个前置节点的next节点
        // 可能是当前节点也可能不是
        Node predNext = pred.next;

        // 设置当前节点的等待状态为CANCELLED
        node.waitStatus = Node.CANCELLED;

        // 如果自己是tail, 则移除它
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL
                    || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);// 设置前一个节点的后一个节点, 将当前节点排除在等待队列之外
            } else {
                // 什么情况下需要唤醒后面的节点 ?
                // 1.如果当前节点是头节点
                // 2.不是头节点, 但是当前节点的前面的节点状态值不是SIGNAL, 但是设置SIGNAL失败时
                // 3.前面的节点为null, 当前节点已经成为了新的头节点
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

    /**
     * 条件: 节点的线程进入Prak状态时, 需先设置前置节点的等待状态是SIGNAL <br>
     * 因为获取锁失败后需要进入Park, 所以需要强制设置前置节点的waitStatus=SIGNAL <br>
     * 所以该方法需在for循环中使用, 循环直到前置节点的waitStatus=SIGNAL <br>
     * 
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            // 前节点状态为-1, 说明当前节点需要被唤醒
            return true;
        if (ws > 0) {// 状态>0是节点都是CANCELLED
            // 前节点状态>0, 找到前状态<=0的节点连在它的后面
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 前节点状态<0时, 设置前节点的等待状态为-1
            // 下一个循环就可以将当前线程Park
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    // 打断当前线程, 目的是重置中断标识位
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

    /**
     * Park当前线程, 等待中断获取unpark
     * 
     * @return 线程是否被中断唤醒
     */
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);// 当前线程Park, 等待被unpark获取被中断
        return Thread.interrupted();// 该方法会重置中断位, 后续的操作需要重新设置中断位
    }

    /**
     * 节点请求排队<br>
     * 节点已经进入同步队列中排队, 排队中再次尝试获取锁<br>
     * 如果获取不到则设置前置节点的waitStatus=SIGNAL后Park等待
     *
     * @param node 当前节点
     * @param arg  锁重入次数
     * @return 排队被中断返回true, 正常唤醒返回false
     */
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            // 第一个是虚节点, 当节点是第二个时就可以抢资源了, 如果获取锁成功了, 下面就不需要执行直接返回
            // 其他情况是设置前节点的等待状态为-1, 线程Park后等待唤醒
            // for循环, 该处必须要是循环之内, 线程要是被中断唤醒后, 没有抢到锁继续Park
            for (;;) {
                final Node p = node.predecessor();// 前节点
                if (p == head && tryAcquire(arg)) {// 前面节点是头节点, 而且获取到了锁
                    setHead(node);// 释放前节点
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node)// 强制设置前置节点的waitStatus=SIGNAL
                        && parkAndCheckInterrupt())// Park当前线程
                    interrupted = true;// 不是中断唤醒不执行
            }
        } finally {
            if (failed)// 上面的操作出现异常, 取消当前线程的请求
                cancelAcquire(node);
        }
    }

    /**
     * 排他模式下, 先获取锁, 获取不到则Park, 如果线程被打断则抛出InterruptedException
     * 
     * @param arg 重入锁的次数
     * @throws InterruptedException
     */
    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);// 添加排他等待者
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 在时间限定下请求锁, 每个多少个ns时间周期请求锁
     *
     * @param arg          the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);// 添加到等待队列
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {// 获取到锁则执行
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node)// 线程应该park
                        && nanosTimeout > spinForTimeoutThreshold// 等待时间>自旋超时时间
                )
                    LockSupport.parkNanos(this, nanosTimeout);// 线程Park
                if (Thread.interrupted())// 线程被打断则抛出异常, 没有打断则继续请求锁
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 共享模式下请求锁
     * 
     * @param arg the acquire argument
     */
    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 共享模式下请求锁, 抛出异常
     * 
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 共享模式下时间间隔请求锁
     *
     * @param arg          the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return true;
                    }
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    // Main exported methods

    /**
     * 请求锁, 该处实现需要注意并发情况, 使用CAS原子锁执行操作
     * 
     * @param arg
     * @return
     */
    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * 释放排他锁 <br>
     * 1. 设置同步器state=0 <br>
     * 2. 设置同步器排他线程为null
     * 
     * @param arg
     * @return
     */
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * 共享模式下获取锁
     * 
     * @param arg
     * @return
     */
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }

    /**
     * 共享模式下释放锁
     * 
     * @param arg
     * @return
     */
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }

    // 判断当前线程是否持有锁
    protected boolean isHeldExclusively() {
        throw new UnsupportedOperationException();
    }

    /**
     * 先请求锁, 请求不到则到等待队列
     * 
     * @param arg
     */
    public final void acquire(int arg) {
        // tryAcquire请求锁, 请求成功离开
        // 请求不成功继续执行acquireQueued, 请求线程入同步队列末等待
        if (!tryAcquire(arg)// 抢锁
                && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)// 抢不到排队, 返回值是精心设计的
        )
            // 锁请求失败, 线程Park被中断时执行下面的方法
            selfInterrupt();// 重置中断
    }

    /**
     * 先请求锁, 请求不到则到等待队列
     * 
     * @param arg
     * @throws InterruptedException
     */
    public final void acquireInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    /**
     * 尝试获取排他锁, 获取不到则间隔获取
     *
     * @param arg          the acquire argument. This value is conveyed to
     *                     {@link #tryAcquire} but is otherwise uninterpreted and
     *                     can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) || doAcquireNanos(arg, nanosTimeout);
    }

    /**
     * 释放锁, 释放完成后唤醒后续节点
     *
     * @param arg the release argument. This value is conveyed to
     *            {@link #tryRelease} but is otherwise uninterpreted and can
     *            represent anything you like.
     * @return the value returned from {@link #tryRelease}
     */
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            // 需要判断当前节点的waitStatus值
            // 后面节点在进入Park是会将前面的waitStatus设置为-1, 如果是-1时就需要唤醒后面的线程节点
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);// 唤醒后面的节点
            return true;
        }
        return false;
    }

    /**
     * Acquires in shared mode, ignoring interrupts. Implemented by first invoking
     * at least once {@link #tryAcquireShared}, returning on success. Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking, invoking
     * {@link #tryAcquireShared} until success.
     *
     * @param arg the acquire argument. This value is conveyed to
     *            {@link #tryAcquireShared} but is otherwise uninterpreted and can
     *            represent anything you like.
     */
    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }

    /**
     * Acquires in shared mode, aborting if interrupted. Implemented by first
     * checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success. Otherwise the thread is
     * queued, possibly repeatedly blocking and unblocking, invoking
     * {@link #tryAcquireShared} until success or the thread is interrupted.
     * 
     * @param arg the acquire argument. This value is conveyed to
     *            {@link #tryAcquireShared} but is otherwise uninterpreted and can
     *            represent anything you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    /**
     * Attempts to acquire in shared mode, aborting if interrupted, and failing if
     * the given timeout elapses. Implemented by first checking interrupt status,
     * then invoking at least once {@link #tryAcquireShared}, returning on success.
     * Otherwise, the thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread is interrupted
     * or the timeout elapses.
     *
     * @param arg          the acquire argument. This value is conveyed to
     *                     {@link #tryAcquireShared} but is otherwise uninterpreted
     *                     and can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 || doAcquireSharedNanos(arg, nanosTimeout);
    }

    /**
     * Releases in shared mode. Implemented by unblocking one or more threads if
     * {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument. This value is conveyed to
     *            {@link #tryReleaseShared} but is otherwise uninterpreted and can
     *            represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    // Queue inspection methods

    /**
     * 等待队列中是否还有等待线程
     *
     * <p>
     * In this implementation, this operation returns in constant time.
     *
     * @return {@code true} if there may be other threads waiting to acquire
     */
    public final boolean hasQueuedThreads() {
        return head != tail;
    }

    /**
     * 等待队列中是否还有内容
     *
     * <p>
     * In this implementation, this operation returns in constant time.
     *
     * @return {@code true} if there has ever been contention
     */
    public final boolean hasContended() {
        return head != null;
    }

    /**
     * Returns the first (longest-waiting) thread in the queue, or {@code null} if
     * no threads are currently queued.
     *
     * <p>
     * In this implementation, this operation normally returns in constant time, but
     * may iterate upon contention if other threads are concurrently modifying the
     * queue.
     *
     * @return the first (longest-waiting) thread in the queue, or {@code null} if
     *         no threads are currently queued
     */
    public final Thread getFirstQueuedThread() {
        // handle only fast path, else relay
        return (head == tail) ? null : fullGetFirstQueuedThread();
    }

    /**
     * Version of getFirstQueuedThread called when fastpath fails
     */
    private Thread fullGetFirstQueuedThread() {
        /*
         * The first node is normally head.next. Try to get its thread field, ensuring
         * consistent reads: If thread field is nulled out or s.prev is no longer head,
         * then some other thread(s) concurrently performed setHead in between some of
         * our reads. We try this twice before resorting to traversal.
         */
        Node h, s;
        Thread st;
        if (((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null)
                || ((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null))
            return st;

        /*
         * Head's next field might not have been set yet, or may have been unset after
         * setHead. So we must check to see if tail is actually first node. If not, we
         * continue on, safely traversing from tail back to head to find first,
         * guaranteeing termination.
         */

        Node t = tail;
        Thread firstThread = null;
        while (t != null && t != head) {
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread;
    }

    /**
     * 判断线程是否已经进入等待队列
     *
     * <p>
     * 遍历等待队列检查线程是否存在
     *
     * @param thread the thread
     * @return {@code true} if the given thread is on the queue
     * @throws NullPointerException if the thread is null
     */
    public final boolean isQueued(Thread thread) {
        if (thread == null)
            throw new NullPointerException();
        for (Node p = tail; p != null; p = p.prev)
            if (p.thread == thread)
                return true;
        return false;
    }

    /**
     * 判断排队个第一个是否是排他模式节点
     */
    final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null;
    }

    /**
     * 检查我前面是否还有别的线程在等待
     * 
     * @return
     */
    public final boolean hasQueuedPredecessors() {
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t && ((s = h.next) == null || s.thread != Thread.currentThread());
    }

    // Instrumentation and monitoring methods

    /**
     * 获取节点的排队的队伍长度
     *
     * @return the estimated number of threads waiting to acquire
     */
    public final int getQueueLength() {
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }

    /**
     * 获取所有的排队线程
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }

    /**
     * 获取所有的排他模式的排队线程
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getExclusiveQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (!p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * 获取所有的共享模式下的排队线程
     *
     * @return the collection of threads
     */
    public final Collection<Thread> getSharedQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * AQS toString
     *
     * @return a string identifying this synchronizer, as well as its state
     */
    public String toString() {
        int s = getState();
        String q = hasQueuedThreads() ? "non" : "";
        return super.toString() + "[State = " + s + ", " + q + "empty queue]";
    }

    // Internal support methods for Conditions

    /**
     * 当前节点是否在同步队列中
     * 
     * @param node the node
     * @return true if is reacquiring
     */
    final boolean isOnSyncQueue(Node node) {
        // 节点状态是CONDITION, 或者节点没有前置节点, 说明节点不在队列里面
        if (node.waitStatus == Node.CONDITION// 节点状态是await, 那肯定是不在同步队列中, 应该在等待队列里面
                || node.prev == null// 前一个节点是null, 则是头节点, 那肯定不需要进行同步
        )
            return false;
        // 节点有后置节点, 说明节点肯定在
        if (node.next != null) // If has successor, it must be on queue
            return true;

        return findNodeFromTail(node);
    }

    /**
     * 从等待队列的最后往前遍历, 检测节点是的在排队
     * 
     * @return true if present
     */
    private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (;;) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }

    /**
     * 将节点从条件队列转换到同步队列
     * 
     * @param node the node
     * @return true if successfully transferred (else the node was cancelled before
     *         signal)
     */
    final boolean transferForSignal(Node node) {
        // 节点状态转换为0
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            // 节点状态转换失败
            return false;

        // 节点加入到同步队列尾
        Node p = enq(node);// 前置节点
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            // 前面的节点取消了, 或者前面节点设置SIGNAL失败, 当前节点unpark
            LockSupport.unpark(node.thread);
        return true;
    }

    /**
     * Transfers node, if necessary, to sync queue after a cancelled wait. Returns
     * true if thread was cancelled before being signalled.
     *
     * @param node the node
     * @return true if cancelled before the node was signalled
     */
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }
        /*
         * If we lost out to a signal(), then we can't proceed until it finishes its
         * enq(). Cancelling during an incomplete transfer is both rare and transient,
         * so just spin.
         */
        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }

    /**
     * 释放所有的可重入的锁
     * 
     * @param node
     * @return
     */
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();// 锁的重入数量
            if (release(savedState)) {// 释放全部
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

    // Instrumentation methods for conditions

    /**
     * Queries whether the given ConditionObject uses this synchronizer as its lock.
     *
     * @param condition the condition
     * @return {@code true} if owned
     * @throws NullPointerException if the condition is null
     */
    public final boolean owns(ConditionObject condition) {
        return condition.isOwnedBy(this);
    }

    /**
     * Queries whether any threads are waiting on the given condition associated
     * with this synchronizer. Note that because timeouts and interrupts may occur
     * at any time, a {@code true} return does not guarantee that a future
     * {@code signal} will awaken any threads. This method is designed primarily for
     * use in monitoring of the system state.
     *
     * @param condition the condition
     * @return {@code true} if there are any waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization is not held
     * @throws IllegalArgumentException     if the given condition is not associated
     *                                      with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    public final boolean hasWaiters(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.hasWaiters();
    }

    /**
     * Returns an estimate of the number of threads waiting on the given condition
     * associated with this synchronizer. Note that because timeouts and interrupts
     * may occur at any time, the estimate serves only as an upper bound on the
     * actual number of waiters. This method is designed for use in monitoring of
     * the system state, not for synchronization control.
     *
     * @param condition the condition
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization is not held
     * @throws IllegalArgumentException     if the given condition is not associated
     *                                      with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    public final int getWaitQueueLength(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitQueueLength();
    }

    /**
     * Returns a collection containing those threads that may be waiting on the
     * given condition associated with this synchronizer. Because the actual set of
     * threads may change dynamically while constructing this result, the returned
     * collection is only a best-effort estimate. The elements of the returned
     * collection are in no particular order.
     *
     * @param condition the condition
     * @return the collection of threads
     * @throws IllegalMonitorStateException if exclusive synchronization is not held
     * @throws IllegalArgumentException     if the given condition is not associated
     *                                      with this synchronizer
     * @throws NullPointerException         if the condition is null
     */
    public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitingThreads();
    }

    /**
     * 条件对象, 获取到锁的线程的进入await的队列
     */
    public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        // 条件队列的第一个元素
        private transient Node firstWaiter;
        // 条件队列的最后一个元素
        private transient Node lastWaiter;

        public ConditionObject() {
        }

        // Internal methods

        /**
         * 将当前线程添加到条件队列中
         * 
         * @return 当前线程的队列节点
         */
        private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

        /**
         * 移除canceled节点, 将条件队列转换为同步队列
         * 
         * @param first (non-null) the first node on condition queue
         */
        private void doSignal(Node first) {
            do {
                if ((firstWaiter = first.nextWaiter) == null)// 下一个waiter设置为firstWaiter
                    lastWaiter = null;// 下一个waiter为null, 设置lastWaiter=null
                first.nextWaiter = null;// 清除nextWaiter
            } while (!transferForSignal(first) && (first = firstWaiter) != null);
        }

        /**
         * 将所有的条件队列转换为同步队列
         * 
         * @param first (non-null) the first node on condition queue
         */
        private void doSignalAll(Node first) {
            lastWaiter = firstWaiter = null;
            do {
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }

        /**
         * 删除条件队列中所有waitStatus!=CONDITION的节点
         */
        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;// 追踪遍历过程中节点状态是CONDITION的最新的节点
            while (t != null) {
                Node next = t.nextWaiter;// 下一个节点
                if (t.waitStatus != Node.CONDITION) {// 当前节点的状态不是 CONDITION
                    t.nextWaiter = null;// 清除
                    if (trail == null)//
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)// await队列尾
                        lastWaiter = trail;
                } else
                    trail = t;
                t = next;
            }
        }

        // public methods

        /**
         * 唤醒等待队列的第一个线程
         */
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

        /**
         * 唤醒所有条件队列的等待节点
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns
         *                                      {@code false}
         */
        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

        /**
         * Implements uninterruptible condition wait.
         * <ol>
         * <li>Save lock state returned by {@link #getState}.
         * <li>Invoke {@link #release} with saved state as argument, throwing
         * IllegalMonitorStateException if it fails.
         * <li>Block until signalled.
         * <li>Reacquire by invoking specialized version of {@link #acquire} with saved
         * state as argument.
         * </ol>
         */
        public final void awaitUninterruptibly() {
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }

        // 出队列后重新打断
        private static final int REINTERRUPT = 1;
        // 出队列后throw InterruptedException
        private static final int THROW_IE = -1;

        /**
         * Checks for interrupt, returning THROW_IE if interrupted before signalled,
         * REINTERRUPT if after signalled, or 0 if not interrupted.
         */
        private int checkInterruptWhileWaiting(Node node) {
            return Thread.interrupted() ? (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0;
        }

        /**
         * Throws InterruptedException, reinterrupts current thread, or does nothing,
         * depending on mode.
         */
        private void reportInterruptAfterWait(int interruptMode) throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /**
         * Implements interruptible condition wait.
         * <ol>
         * <li>如果当前线程被打断则抛出异常
         * <li>Save lock state returned by {@link #getState}.
         * <li>请求Invoke {@link #release} 释放上面获取lock状态, 失败则抛出IllegalMonitorStateException
         * <li>阻塞等待唤醒或者打断
         * <li>重新争抢锁, 抢到则继续运行
         * <li>If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();// 将线程添加到await队列
            int savedState = fullyRelease(node);// 释放所有的重入锁
            int interruptMode = 0;//
            while (!isOnSyncQueue(node)) {// 检查线程是否在同步队列中
                // 不在同同步队列中就应该阻塞
                LockSupport.park(this);// park
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            // 请求锁, 请求不到进入同步队列等待
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li>If current thread is interrupted, throw InterruptedException.
         * <li>Save lock state returned by {@link #getState}.
         * <li>Invoke {@link #release} with saved state as argument, throwing
         * IllegalMonitorStateException if it fails.
         * <li>Block until signalled, interrupted, or timed out.
         * <li>Reacquire by invoking specialized version of {@link #acquire} with saved
         * state as argument.
         * <li>If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final long awaitNanos(long nanosTimeout) throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

        /**
         * Implements absolute timed condition wait.
         * <ol>
         * <li>If current thread is interrupted, throw InterruptedException.
         * <li>Save lock state returned by {@link #getState}.
         * <li>Invoke {@link #release} with saved state as argument, throwing
         * IllegalMonitorStateException if it fails.
         * <li>Block until signalled, interrupted, or timed out.
         * <li>Reacquire by invoking specialized version of {@link #acquire} with saved
         * state as argument.
         * <li>If interrupted while blocked in step 4, throw InterruptedException.
         * <li>If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean awaitUntil(Date deadline) throws InterruptedException {
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li>If current thread is interrupted, throw InterruptedException.
         * <li>Save lock state returned by {@link #getState}.
         * <li>Invoke {@link #release} with saved state as argument, throwing
         * IllegalMonitorStateException if it fails.
         * <li>Block until signalled, interrupted, or timed out.
         * <li>Reacquire by invoking specialized version of {@link #acquire} with saved
         * state as argument.
         * <li>If interrupted while blocked in step 4, throw InterruptedException.
         * <li>If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean await(long time, TimeUnit unit) throws InterruptedException {
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        // support for instrumentation

        /**
         * Returns true if this condition was created by the given synchronization
         * object.
         *
         * @return {@code true} if owned
         */
        final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
            return sync == AbstractQueuedSynchronizer.this;
        }

        /**
         * Queries whether any threads are waiting on this condition. Implements
         * {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
         *
         * @return {@code true} if there are any waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns
         *                                      {@code false}
         */
        protected final boolean hasWaiters() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /**
         * Returns an estimate of the number of threads waiting on this condition.
         * Implements
         * {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
         *
         * @return the estimated number of waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns
         *                                      {@code false}
         */
        protected final int getWaitQueueLength() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /**
         * Returns a collection containing those threads that may be waiting on this
         * Condition. Implements
         * {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
         *
         * @return the collection of threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns
         *                                      {@code false}
         */
        protected final Collection<Thread> getWaitingThreads() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION) {
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }

    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
        try {
            stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next"));

        } catch (Exception ex) {
            throw new Error(ex);
        }
    }

    // 设置头节点
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    // 设置等待队列的尾节点
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    // 设置节点的等待状态值
    private static final boolean compareAndSetWaitStatus(Node node, int expect, int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset, expect, update);
    }

    // 设置当前节点的下一个节点值
    private static final boolean compareAndSetNext(Node node, Node expect, Node update) {
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }
}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容