DNA甲基化知识概述

DNA甲基化的前世今生

  DNA甲基化作为一种可遗传的表观遗传修饰,在生物个体的生长发育与繁殖过程中,维持遗传物质的稳定性是至关重要的。在真核生物基因组中,编码基因仅仅占一小部分,例如在人类基因组中编码基因还不到2%,那么在大量非编码DNA存在的情况下,实现精确控制基因的表达,降低周围的转录噪音对生物体至关重要,而DNA甲基化则为非编码DNA的长期沉默提供了一种有效的抑制机制。近年来的大量研究表明,DNA异常甲基化与肿瘤的发生、发展、细胞癌变有着密切的联系。DNA甲基化在肿瘤中的作用主要表现在以下几个方面:一是甲基化的CpG岛二核苷酸中的胞嘧啶以较高的频率脱氨基变成胸腺嘧啶,造成基因突变;二是抑癌基因和DNA修复基因由于超甲基化而沉默;三是癌基因甲基化水平降低而活化;四是基因组总体甲基化水平降低使转座子、重复序列活化导致染色体稳定性下降。这些因素是导致肿瘤发展、转移、恶化最终导致患者死亡的重要原因。DNA总体甲基化水平和特定基因甲基化程度改变可作为肿瘤诊断指标。正是由于DNA甲基化在维持正常细胞的功能、基因组结构稳定、遗传印记、胚胎发育、及肿瘤和疾病的发生、发展等方面发挥重要作的作用,所以在科研中受到越来越多的重视。

  在基因组所有甲基化的碱基中占比最多的是5-甲基胞嘧啶(5mC),在哺乳动物中占比为98%左右,由DNA甲基转移酶家族(Dnmts)催化甲基从S-腺嘌呤甲硫氨酸(SAM)转移至胞嘧啶残基的第五个碳而形成。与此同时,5mC可以在氧化蛋白TET的作用下转化为5-羟甲基胞嘧啶(5-hmC),进一步在TET的氧化下转化为5-甲酰基胞嘧啶(5-fC),最终在TET的氧化下转化为5-羧基胞嘧啶(5-caC)。在基因组中含有很多CpG结构,60%~ 90% 的CpG 都被甲基化,未甲基化的CpG 成簇地组成CpG 岛,位于结构基因启动子的核心序列和转录起始点。关于甲基化的维持只要受DNMT1和UHRF1两个蛋白控制,用于在DNA复制时让新生成的链维持原有的甲基化模式。目前,在植物中,主要存在两种去甲基化方式,一是被动去甲基化,即DNA复制时新生成的链丢失甲基化;二是主动去甲基化,在DNA糖基化酶(DME)和ROS1的作用下,通过碱基错配修复途径(BER)去除甲基化。在哺乳动物中,被动去甲基化与植物相同,而DNA修复酶-胸腺嘧啶DNA糖基化酶(TDG)在DNA主动去甲基化上扮演了重要角色,关于主动去甲基化的过程还需进一步的研究。

  目前,关于DNA甲基化的测序方法分为两大类,一类是以蛋白质特异性结合为基础的富集方法,该类方法类似ChIP-seq,可以将甲基化区域富集下来,然后测序分析甲基化情况,该类方法有一个很明显的缺点就是不是单碱基分辨率水平,因为富集到只是区间没法确定具体是哪一个位置发生了甲基化。如果只是想知道某些区域是否发生甲基化,得到一个定性的结论,那么用该类方法就很方便;二是以C碱基转化为T碱基为基础的测序方法,随着技术的发展,该类方法又可以分为两种技术,一种是将未甲基化的C碱基转化为T,另一种是将甲基化的C碱基转化为T。目前市场上还是以未甲基化的C碱基做转化的方法为主流,这其中以重亚硫酸盐处理的方法被大家认为是甲基化测序的“金标准”。该类方法有一个很明显的特点就是甲基化的分辨率可以达到单碱基的水平,再结合NGS的高通量特点,让科研人员很容易就能得到全基因组上的甲基化图谱。虽然优势很明显,但其也存在一些缺陷,体现在以下几个方面:1、对DNA的破坏,亚硫酸盐处理的反应条件比较剧烈,高温高酸的条件下会使很多DNA序列发生降解,使得DNA序列的多样性下降。为了达到很好的建库效果就需要高质量高有浓度的DNA样本;2、亚硫酸盐处理方法依赖未碱基化的C碱基转化为T碱基,而基因组范围内95%左右都是为甲基化的C,转化后导致文库碱基严重失衡,对测序结果造成影响,故这类文库上机测序时需要参入一定比例的Phix文库。同时,如果C->T的转化效率低,由于其基数很大也会造成很高的假阳性。随着技术的发展,一些将甲基化的C转碱基化为T的方法崭露头角脚,这些技术的天然优势就是甲基化的C碱基本身占比就很少,而且反应条件比较温和,基本不会引起DNA降解保持很好的序列多样性和复杂度,通过测定C->T转化有一种“所见即所得的感觉”,可以降低假阳性的产生。Bisulfite-free技术也在发展。虽然这些技术还不很成熟,但其优势却很明显,未来技术成有所突破一定会让其成为主流。

写在最后

  通过对DNA甲基化方面的知识做一个梳理,自己从中有所收获。个人觉得了解一个方面的知识,最好的方法可能是找一些好的综述来阅读。关于DNA甲基化,下面给出了一篇不错的综述,虽然文章发表于2014年,距离现在已经过去有些年限,但对于不了解的人来说里面的内容还是属于比较经典的,值得一看。今天就分享到这了~~~

Wu H , Zhang Y . Reversing DNA methylation: mechanisms, genomics, and biological functions.[J]. Cell, 2014, 156(1-2):45-68.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容