光谱预处理最简单实现方法--基于OpenSA光谱分析库

系列文章目录

“光晰本质,谱见不同”,光谱作为物质的指纹,被广泛应用于成分分析中。伴随微型光谱仪/光谱成像仪的发展与普及,基于光谱的分析技术将不只停留于工业和实验室,即将走入生活,实现万物感知,见微知著。本系列文章致力于光谱分析技术的科普和应用

前言

典型的光谱分析模型(以近红外光谱作为示意,可见光、中远红外、荧光、拉曼、高光谱等分析流程亦相似)建立流程如下所示,在建立过程中,需要使用算法对训练样本进行选择,然后使用预处理算法对光谱进行预处理,或对光谱的特征进行提取,再构建校正模型实现定量分析,最后针对不同测量仪器或环境,进行模型转移或传递。因此训练样本的选择、光谱的预处理、波长筛选、校正模型、模型传递以及上述算法的参数都影响着模型的应用效果。


建模流程.jpg

针对光谱分析流程所涉及的常见的训练样本的划分、光谱的预处理、波长筛选、校正模型算法建立了完整的算法库,名为OpenSA(OpenSpectrumAnalysis)。整套算法库的架构如下所示。


OpenSA.jpg

样本划分模块提供随机划分、SPXY划分、KS划分三种数据集划分方法,光谱预处理模块提供常见光谱预处理,波长筛选模块提供Spa、Cars、Lars、Uve、Pca等特征降维方法,分析模块由光谱相似度计算、聚类、分类(定性分析)、回归(定量分析)构建,光谱相似度子模块计算提供SAM、SID、MSSIM、MPSNR等相似计算方法,聚类子模块提供KMeans、FCM等聚类方法,分类子模块提供ANN、SVM、PLS_DA、RF等经典化学计量学方法,亦提供CNN、AE、Transformer等前沿深度学习方法,回归子模块提供ANN、SVR、PLS等经典化学计量学定量分析方法,亦提供CNN、AE、Transformer等前沿深度学习定量分析方法。模型评估模块提供常见的评价指标,用于模型评估。自动参数优化模块用于自动进行最佳的模型设置参数寻找,提供网格搜索、遗传算法、贝叶斯概率三种最优参数寻找方法。可视化模块提供全程的分析可视化,可为科研绘图,模型选择提供视觉信息。可通过几行代码快速实现完整的光谱分析及应用(注: 自动参数优化模块和可视化模块暂不开源,等毕业后再说)
本篇针对OpenSA的光谱预处理模块进行代码开源和使用示意。

一、光谱数据读入

提供两个开源数据作为实列,一个为公开定量分析数据集,一个为公开定性分析数据集,本章仅以公开定量分析数据集作为演示。

1.1 光谱数据读入

# 分别使用一个回归、一个分类的公开数据集做为example
def LoadNirtest(type):

    if type == "Rgs":
        CDataPath1 = './/Data//Rgs//Cdata1.csv'
        VDataPath1 = './/Data//Rgs//Vdata1.csv'
        TDataPath1 = './/Data//Rgs//Tdata1.csv'

        Cdata1 = np.loadtxt(open(CDataPath1, 'rb'), dtype=np.float64, delimiter=',', skiprows=0)
        Vdata1 = np.loadtxt(open(VDataPath1, 'rb'), dtype=np.float64, delimiter=',', skiprows=0)
        Tdata1 = np.loadtxt(open(TDataPath1, 'rb'), dtype=np.float64, delimiter=',', skiprows=0)

        Nirdata1 = np.concatenate((Cdata1, Vdata1))
        Nirdata = np.concatenate((Nirdata1, Tdata1))
        data = Nirdata[:, :-4]
        label = Nirdata[:, -1]

    elif type == "Cls":
        path = './/Data//Cls//table.csv'
        Nirdata = np.loadtxt(open(path, 'rb'), dtype=np.float64, delimiter=',', skiprows=0)
        data = Nirdata[:, :-1]
        label = Nirdata[:, -1]

    return data, label

1.2 光谱可视化

    #载入原始数据并可视化
    data, label = LoadNirtest('Rgs')
    plotspc(data, "raw specturm")

采用的开源光谱如图所示:


image.png

二、光谱预处理

2.1 光谱预处理模块

将常见的光谱进行了封装,使用者仅需要改变名字,即可选择对应的光谱分析,下面是光谱预处理模块的核心代码

"""
    -*- coding: utf-8 -*-
    @Time   :2022/04/12 17:10
    @Author : Pengyou FU
    @blogs  : https://blog.csdn.net/Echo_Code?spm=1000.2115.3001.5343
    @github :
    @WeChat : Fu_siry
    @License:

"""
import numpy as np
from scipy import signal
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from copy import deepcopy
import pandas as pd
import pywt


# 最大最小值归一化
def MMS(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after MinMaxScaler :(n_samples, n_features)
       """
    return MinMaxScaler().fit_transform(data)


# 标准化
def SS(data):
    """
        :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after StandScaler :(n_samples, n_features)
       """
    return StandardScaler().fit_transform(data)


# 均值中心化
def CT(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after MeanScaler :(n_samples, n_features)
       """
    for i in range(data.shape[0]):
        MEAN = np.mean(data[i])
        data[i] = data[i] - MEAN
    return data


# 标准正态变换
def SNV(data):
    """
        :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after SNV :(n_samples, n_features)
    """
    m = data.shape[0]
    n = data.shape[1]
    print(m, n)  #
    # 求标准差
    data_std = np.std(data, axis=1)  # 每条光谱的标准差
    # 求平均值
    data_average = np.mean(data, axis=1)  # 每条光谱的平均值
    # SNV计算
    data_snv = [[((data[i][j] - data_average[i]) / data_std[i]) for j in range(n)] for i in range(m)]
    return  data_snv



# 移动平均平滑
def MA(data, WSZ=11):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :param WSZ: int
       :return: data after MA :(n_samples, n_features)
    """

    for i in range(data.shape[0]):
        out0 = np.convolve(data[i], np.ones(WSZ, dtype=int), 'valid') / WSZ # WSZ是窗口宽度,是奇数
        r = np.arange(1, WSZ - 1, 2)
        start = np.cumsum(data[i, :WSZ - 1])[::2] / r
        stop = (np.cumsum(data[i, :-WSZ:-1])[::2] / r)[::-1]
        data[i] = np.concatenate((start, out0, stop))
    return data


# Savitzky-Golay平滑滤波
def SG(data, w=11, p=2):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :param w: int
       :param p: int
       :return: data after SG :(n_samples, n_features)
    """
    return signal.savgol_filter(data, w, p)


# 一阶导数
def D1(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after First derivative :(n_samples, n_features)
    """
    n, p = data.shape
    Di = np.ones((n, p - 1))
    for i in range(n):
        Di[i] = np.diff(data[i])
    return Di


# 二阶导数
def D2(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after second derivative :(n_samples, n_features)
    """
    data = deepcopy(data)
    if isinstance(data, pd.DataFrame):
        data = data.values
    temp2 = (pd.DataFrame(data)).diff(axis=1)
    temp3 = np.delete(temp2.values, 0, axis=1)
    temp4 = (pd.DataFrame(temp3)).diff(axis=1)
    spec_D2 = np.delete(temp4.values, 0, axis=1)
    return spec_D2


# 趋势校正(DT)
def DT(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after DT :(n_samples, n_features)
    """
    lenth = data.shape[1]
    x = np.asarray(range(lenth), dtype=np.float32)
    out = np.array(data)
    l = LinearRegression()
    for i in range(out.shape[0]):
        l.fit(x.reshape(-1, 1), out[i].reshape(-1, 1))
        k = l.coef_
        b = l.intercept_
        for j in range(out.shape[1]):
            out[i][j] = out[i][j] - (j * k + b)

    return out


# 多元散射校正
def MSC(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after MSC :(n_samples, n_features)
    """
    n, p = data.shape
    msc = np.ones((n, p))

    for j in range(n):
        mean = np.mean(data, axis=0)

    # 线性拟合
    for i in range(n):
        y = data[i, :]
        l = LinearRegression()
        l.fit(mean.reshape(-1, 1), y.reshape(-1, 1))
        k = l.coef_
        b = l.intercept_
        msc[i, :] = (y - b) / k
    return msc

# 小波变换
def wave(data):
    """
       :param data: raw spectrum data, shape (n_samples, n_features)
       :return: data after wave :(n_samples, n_features)
    """
    data = deepcopy(data)
    if isinstance(data, pd.DataFrame):
        data = data.values
    def wave_(data):
        w = pywt.Wavelet('db8')  # 选用Daubechies8小波
        maxlev = pywt.dwt_max_level(len(data), w.dec_len)
        coeffs = pywt.wavedec(data, 'db8', level=maxlev)
        threshold = 0.04
        for i in range(1, len(coeffs)):
            coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i]))
        datarec = pywt.waverec(coeffs, 'db8')
        return datarec

    tmp = None
    for i in range(data.shape[0]):
        if (i == 0):
            tmp = wave_(data[i])
        else:
            tmp = np.vstack((tmp, wave_(data[i])))

    return tmp

def Preprocessing(method, data):

    if method == "None":
        data = data
    elif method == 'MMS':
        data = MMS(data)
    elif method == 'SS':
        data = SS(data)
    elif method == 'CT':
        data = CT(data)
    elif method == 'SNV':
        data = SNV(data)
    elif method == 'MA':
        data = MA(data)
    elif method == 'SG':
        data = SG(data)
    elif method == 'MSC':
        data = MSC(data)
    elif method == 'D1':
        data = D1(data)
    elif method == 'D2':
        data = D2(data)
    elif method == 'DT':
        data = DT(data)
    elif method == 'WVAE':
        data = wave(data)
    else:
        print("no this method of preprocessing!")

    return data


2 .2 光谱预处理的使用

在example.py文件中,提供了光谱预处理模块的使用方法,具体如下,仅需要两行代码即可实现所有常见的光谱预处理。
示意1:利用OpenSA实现MSC多元散射校正

 #载入原始数据并可视化
    data, label = LoadNirtest('Rgs')
    plotspc(data, "raw specturm")
    #光谱预处理并可视化
    method = "MSC"
    Preprocessingdata = Preprocessing(method, data)
    plotspc(Preprocessingdata, method)

预处理后的光谱数据如图所示:


image.png

示意2:利用OpenSA实现SNV预处理

    #载入原始数据并可视化
    data, label = LoadNirtest('Rgs')
    plotspc(data, "raw specturm")
    #光谱预处理并可视化
    method = "SNV"
    Preprocessingdata = Preprocessing(method, data)
    plotspc(Preprocessingdata, method)

预处理后的光谱数据如图所示:

image.png

总结

利用OpenSA可以非常简单的实现对光谱的预处理,完整代码可从获得GitHub仓库 如果对您有用,请点赞!
代码现仅供学术使用,若对您的学术研究有帮助,请引用本人的论文,同时,未经许可不得用于商业化应用,欢迎大家继续补充OpenSA中所涉及到的算法,如有问题,微信:Fu_siry

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容