Python数据分析与机器学习24-集成算法与随机森林

一. 集成算法概述

目的:
让机器学习效果更好,单个不行,群殴走起

分类:

  1. Bagging
    训练多个分类器取平均


    image.png
  2. Boosting
    从弱学习器开始加强,通过加权来进行训练
    (加入一棵树,要比原来强)


    image.png
  3. Stacking
    聚合多个分类或回归模型(可以分阶段来做)

二. Bagging模型

全称:bootstrap aggregation(说白了就是并行训练一堆分类器)
最典型的代表就是随机森林啦

随机:
数据采样随机,特征选择随机

森林:
很多个决策树并行放在一起

image.png

随机森林:
构造树模型:

image.png

由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样

Bagging模型:
树模型:

image.png

image.png

之所以要进行随机,是要保证泛化能力,如果树都一样,那就没意义了!

随机森林优势:
它能够处理很高维度(feature很多)的数据,并且不用做特征选择
在训练完后,它能够给出哪些feature比较重要
容易做成并行化方法,速度比较快
可以进行可视化展示,便于分析

image.png

Bagging模型:
KNN模型:

image.png

image.png

KNN就不太适合,因为很难去随机让泛化能力变强!

树模型:


image.png

理论上越多的树效果会越好,但实际上基本超过一定数量就差不多上下浮动了

三. Boosting模型

典型代表:
AdaBoost,Xgboost
Adaboost会根据前一次的分类效果调整数据权重

解释:
如果某一个数据在这次分错了,那么在下一次我就会给它更大的权重

最终的结果:
每个分类器根据自身的准确性来确定各自的权重,再合体

Adaboost工作流程:
每一次切一刀!
最终合在一起
弱分类器这就升级了!

image.png

四. Stacking模型

堆叠:
很暴力,拿来一堆直接上(各种分类器都来了)
可以堆叠各种各样的分类器(KNN,SVM,RF等等)

分阶段:
第一阶段得出各自结果,第二阶段再用前一阶段结果训练
为了刷结果,不择手段!

image.png

堆叠在一起确实能使得准确率提升,但是速度是个问题
集成算法是竞赛与论文神器,当我们更关注于结果时不妨来试试!

参考:

  1. https://study.163.com/course/introduction.htm?courseId=1003590004#/courseDetail?tab=1
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容