互联网运营,应该分析哪些数据和指标?

运营分很多类,流量运营、用户运营、内容运营…每一个环节都有特别关注的数据和指标。

回答中很多都从PVUV用户数这些数据来切入分析,但是分析之后呢,做什么措施?以什么样的目标来驱动?我也分析做过这样的分析,这些常规的数据大多只是绑定着个人的KPI,反应这个人工作成绩的好坏,并不是一场完整的数据分析。这里我想从更全面的角度来总结互联网企业的运营体系,精益数据分析。

数据分析的目的应该是为了公司的发展,粗暴一点讲,是为了公司的盈利和持续的盈利。

而互联网的盈利模式不同,数据指标也不同,大抵可分为三种:一是向用户出售商品或服务,以电商、社交和o2o平台为代表;二是靠广告来进行盈利,典型的例如google、百度以及其他平台类互联网公司;三是直接向用户收取费用,各大游戏公司。

以分析体系最为复杂的互联网电商公司为例,来逐一分解,哪些数据需要分析,怎样分析,分析的价值是什么。

电商类公司的收入是由一个个订单堆出来,由用户购买相关的商品或服务产生,可以说用户和商品或服务为订单的两大基本元素,公司收入下降、增长、异常最终都可以追踪到用户与商品这两大元素上。这样我们将收入相关的数据拆解为三大类:用户、商品和订单。

一、运营模块

从用户的消费流程来看,可以划分为引流-转化-消费-存留。我们一般将用户分为新老用户,无论新老用户,都会关注两块内容,一个是引流(拉新),一个是转化,最终以数据的形式体现出来,就是流量与转化率。

引流

通过分析PV、UV、访问次数、平均访问深度、跳出率等数据来衡量流量质量优劣。目的是保证流量的稳定性,并通过调整,尝试提高流量。

进一步,按照流量结构还可分为渠道结构、业务结构、地区结构。

在渠道中,流量可来自于自主访问、搜索引擎、淘宝付费、京东付费等等。按设备可分为PC渠道和APP渠道;按照付费与否可分为免费流量和付费流量。有人会通过渠道流量占比来分析各渠道的质量。下面的折线图可以对各渠道的流量情况进行追踪,分析占比不合理是短期内出现的,还是长期存在的,辅助问题的分析。仅仅根据流量情况来衡量质量是不全面的,需要配合转化率和roi.

按地区划分,这个很好理解。

按照业务结构,最典型的比如举办一场活动,例如双十一,可定要对活动的流量追踪。观察活动前、活动中、活动后的变化情况,评估活动效果。

转化

完成引流工作后,下一步需要考虑转化,这中间需要经历浏览页面->注册成为用户->登陆->添加购物车->下单->付款->完成交易。每一个环节中都会有用户流失,提高各个环节的转化率,是这一块工作的最核心,转化率的提升,意味着更低的成本,更高的利润。

转化的分析:

1.观察各环节转化率,分析其合理性,针对转化率异常环节进行调整

2.追踪转化率变化,用于异常定位和策略调整效果验证

3.观察各渠道转化情况,定义渠道价值,并依此适当调整运营策略

4.分析各环节转化周期,分析用户习惯,为制定运营策略提供依据

最直接的分析成果就是转化漏斗。

留存

通过各个渠道或者活动把用户吸引过来,但是过一段时间就会有用户流失走掉,当然也会有一部分用户留下来,留下来这部分用户就叫做留存用户。关于留存,这里要关注的就是日活和留存率。

关于留存,无非就是:

1.日活监控,观察用户活跃数据,分析日活健康度

2.观察存留规律,定位存留阶段,辅助市场活动、市场策略定位等

3.对比不同用户、产品功能的存留情况,分析产品价值、辅助产品调整

复购

有调查数据显示,一个满意的用户会带来8笔潜在生意,不满意的用户可能会影响25个人的购买意愿,可见回头客多么重要。

复购率可以分为“用户复购率”和“订单复购率”,此外,“用户回购率”意义与复购率相似,也在此范围内。

用户复购率=单位时间内:购买两次及以上的用户数/有购买行为的总用户数

订单复购率=单位时间内:第二次及以上购买的订单个数/总订单数

用户回购率=单位时间内:有购买行为的老用户数/有购买行为的总用户数

分析复购率的目的:

1.综合指标展示,分析用户黏性,辅助发现复购率问题,制定运营策略。

2.横向维度(商品、用户、渠道)对比分析,细化复购率,辅助问题定位。

流失

流失是无法避免的,但也有可以挽留的。

流失可以分为

刚性流失:可以进一步分为新用户水土不服型和老用户兴趣转移型,这部分流失用户是无法挽留的,缘尽于此,花再多的钱也没什么用。

体验流失:可能是应用体验、服务体验、交易体验、商品体验等等,总之就是在使用产品服务的过程中,感到了一丝不爽,正所谓一言不合就流失。

竞争流失:也就是用户已经转粉了。可能是竞争对手的体验更好,可能竞争对手推出了什么优惠的政策。我们也需要抓住行业的动态,针对竞争对手的抢粉行为做出相应的行动。

关于流失的定义,各公司定义不同,可能是7天内没有登陆行为,也可以是几个月之内没有交易行为。(回流率=时间周期内流失的再回访的人数/时间周期内流失的人数)

关于流失的常规数据监控,一般都是和存留一起的,本身两者也是分不开的。单独针对流失的,最多看到如下图样式的监控:

再者,流失率结合存留率也可以评估渠道的价值。

二、销售模块

1、指标跟踪:销售模块中有大量的指标,包括同环比、完成率、销售排行、重点商品占比、平台占比等等,可以从人、货、场三个视角进行分析跟踪。

2、店铺分析:具有小b级用户,或者入驻平台式,需要针对各店铺经营指标进行分析,包括各店铺效率指标、完成率指标、业绩指标、客单价等,实现店铺价值评定分析。

3、销售活动管理:线上销售中,活动是非常重要的一块,从事前、事中、事后三个层面实现销售活动的闭环分析,其中包括事前投入分析、目标预测;事中用户参与度、客流分析、销售单分析;事后目标完成情况、活动对比、费销比、活动衰减度、活动爆发度等.

三、商品模块

1、采购管理:包括供应商数据分析、采购匹配度分析等。

2、供应链环节管理:供应链服务情况分析(响应周期、交货及时率、订单执行率)、管理指标分析(物资成本占比、客户投诉率等)。

3、库存管理:商品库存天数、存销比、有效库存比、库存周转率等数据分析。

4、重要指标分析:分析包括货龄、动销率、缺货率、结构指标、价格体系、关联分析、、畅滞销等分析指标,评判商品价值,辅助调整商品策略。

5、异常商品分析:包括对退货率、残损率、异常商品等数据进行分析,发现异常商品,及时处理。

四、用户模块

1、重点指标分析:包括新增用户数、增长率、流失率、有效会员占比、存留率情况等。

2、用户价值分析:根据rfm模型,再融入其他个性化参数,对用户进行价值的划分,并针对各等级用户进一步的分析。

3、用户画像:根据固有属性、行为属性、交易属性、兴趣爱好等维度,来为用户添加标签与权重,设计用户画像,提供精准营销参考依据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,627评论 6 517
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 95,180评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 169,346评论 0 362
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,097评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 69,100评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,696评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,165评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,108评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,646评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,709评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,861评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,527评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,196评论 3 336
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,698评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,804评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,287评论 3 379
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,860评论 2 361

推荐阅读更多精彩内容