线程池构造类5个参数详解


JDK1.5中引入了强大的concurrent包,其中最常用的莫过了线程池的实现ThreadPoolExecutor,它给我们带来了极大的方便,但同时,对于该线程池不恰当的设置也可能使其效率并不能达到预期的效果,甚至仅相当于或低于单线程的效率。

ThreadPoolExecutor类可设置的参数主要有:

corePoolSize

在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,(除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程)。

默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中。核心线程在allowCoreThreadTimeout被设置为true时会超时退出,默认情况下不会退出。

maxPoolSize

当线程数大于或等于核心线程,且任务队列已满时,线程池会创建新的线程,直到线程数量达到maxPoolSize。如果线程数已等于maxPoolSize,且任务队列已满,则已超出线程池的处理能力,线程池会拒绝处理任务而抛出异常。

keepAliveTime

当线程空闲时间达到keepAliveTime,该线程会退出,直到线程数量等于corePoolSize。如果allowCoreThreadTimeout设置为true,则所有线程均会退出直到线程数量为0。

allowCoreThreadTimeout

是否允许核心线程空闲退出,默认值为false。

queueCapacity

任务队列容量。从maxPoolSize的描述上可以看出,任务队列的容量会影响到线程的变化,因此任务队列的长度也需要恰当的设置。

还有就是workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:

ArrayBlockingQueue;LinkedBlockingQueue;SynchronousQueue;PriorityBlockingQueue

ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。

threadFactory:线程工厂,主要用来创建线程;

handler:表示当拒绝处理任务时的策略,有以下四种取值:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。

ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。

ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)

ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

线程池按以下行为执行任务

当线程数小于核心线程数时,创建线程。

当线程数大于等于核心线程数,且任务队列未满时,将任务放入任务队列。

当线程数大于等于核心线程数,且任务队列已满

若线程数小于最大线程数,创建线程

若线程数等于最大线程数,抛出异常,拒绝任务

系统负载

参数的设置跟系统的负载有直接的关系,下面为系统负载的相关参数:

tasks,每秒需要处理的最大任务数量

tasktime,处理第个任务所需要的时间

responsetime,系统允许任务最大的响应时间,比如每个任务的响应时间不得超过2秒。

参数设置

corePoolSize:

每个任务需要tasktime秒处理,则每个线程每钞可处理1/tasktime个任务。系统每秒有tasks个任务需要处理,则需要的线程数为:tasks/(1/tasktime),即tasks*tasktime个线程数。假设系统每秒任务数为100~1000,每个任务耗时0.1秒,则需要100*0.1至1000*0.1,即10~100个线程。那么corePoolSize应该设置为大于10,具体数字最好根据8020原则,即80%情况下系统每秒任务数,若系统80%的情况下第秒任务数小于200,最多时为1000,则corePoolSize可设置为20。

queueCapacity:

任务队列的长度要根据核心线程数,以及系统对任务响应时间的要求有关。队列长度可以设置为(corePoolSize/tasktime)*responsetime: (20/0.1)*2=400,即队列长度可设置为400。

队列长度设置过大,会导致任务响应时间过长,切忌以下写法:

LinkedBlockingQueue queue = new LinkedBlockingQueue();

这实际上是将队列长度设置为Integer.MAX_VALUE,将会导致线程数量永远为corePoolSize,再也不会增加,当任务数量陡增时,任务响应时间也将随之陡增。

maxPoolSize:

当系统负载达到最大值时,核心线程数已无法按时处理完所有任务,这时就需要增加线程。每秒200个任务需要20个线程,那么当每秒达到1000个任务时,则需要(1000-queueCapacity)*(20/200),即60个线程,可将maxPoolSize设置为60。

keepAliveTime:

线程数量只增加不减少也不行。当负载降低时,可减少线程数量,如果一个线程空闲时间达到keepAliveTiime,该线程就退出。默认情况下线程池最少会保持corePoolSize个线程。

allowCoreThreadTimeout:

默认情况下核心线程不会退出,可通过将该参数设置为true,让核心线程也退出。

以上关于线程数量的计算并没有考虑CPU的情况。若结合CPU的情况,比如,当线程数量达到50时,CPU达到100%,则将maxPoolSize设置为60也不合适,此时若系统负载长时间维持在每秒1000个任务,则超出线程池处理能力,应设法降低每个任务的处理时间(tasktime)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343