大数据究竟是什么?一句话让你认识并读懂大数据

什么是大数据,很多的朋友可能对大数据不是很了解,迫切需要了解大数据,下面新霸哥将用一句话来让你认识并读懂大数据,大数据就是无法通过人工,在合理时间内达到管理处理并整理成为人类所能解读的信息。

大数据特征

大数据就是无法通过人工的方式来完成数据分析和处理,需要借助工具才能完成相应的数据处理。大数据通常有3个特征:数量,种类,速度。准确的来说可以用大量,多样性,速度快以及价值高和密度低这四大特征来描述大数据。

一、大量性,数据量的级别从GB至、PB、乃至ZB上升,可称为海量,巨量甚至超量。并且以很快的速度在增长。最为典型的就是我们使用的微信,每天都会产生上亿级别的数据,来自不同领域,不同平台的用户都会产生大量的数据,这些数据是在不断的增长的,并且每个时间点都是不一样的,面对这样高速的增加,需要支撑的服务也是有要求的,这就需要有高并发高吞吐量的服务器来支撑。

二、多样性。数据信息由原来的简单数值、字符和文本向网页、图片、视频、图像和位置信息等半结构化和非结构化的数据类型发展,并且有一个通过的特征,信息大多分布在不同的地理位置、不同的存储设备以及不同的数据管理平台。简单的总结为三点:(1)数据来源多,和我们生活密切相关的社交应用像微博、微信、社交网站等等。(2)数据类型繁多,来自同一个平台可能就有不同的数据类型,图片,视频等等。(3)数据之间的关联性强,交互频繁,大型电子商务网站和社交网络中,一些用户的点击行为在一定程度上反映了该用户潜在的兴趣爱好和需求,链接之间的关联性是很强的。

三、快速化,大数据多数据的处理也是有一定的要求的,有的应用要求对数据的处理做到实时、快速。比较常见的就是我们最好的1元购,每次都有来自不同区域的海量数据,要在一定的时间内完成数据的计算和分析,这就需要将分布式计算、并行计算等等深度的结合才能满足需求的。

四、价值高密度低,我们经常会看到很多虚假的信息,通常情况下正在有价值的信息还是很分散的、密度非常低的,要在海量中寻求有价值的信息还是很有技术要求的。

大数据应用

大数据的广泛存在是有一定的商业价值的,现在大数据已经被广泛的应用在医疗,教育,科研等等很多领域,比较常见的就是网络营销,在网上我们会经常遇到这样的问题,我们曾经搜索过的商品或者某个产品在某个网站上有产品推荐,比较常见的就是百度推广,我们在搜索网页的时候会有相关产品的推荐,这就是大数据的一个最为典型的数据分析应用,根据不同用户的不同需求会有不同商品的推荐。

大数据处理技术

有了大数据应用肯定有对于的技术来解决的,最为常见的就是hadoop海量数据离线处理,strom实时在线数据分析处理,spart启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

感兴趣的朋友可以和新霸哥交流共同学习。好了,新霸哥今天就写到这里了,接下来会继续的和大家一起分享更多新知识,当然也可以关注 软件开发信息交流公众号:javaandcp 继续了解详情,新霸哥以"学了么"为目标,专注科技。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容