hive 分区表

hive 分区表:

分区字段的物理表现:

hive分区表,其真实的表现其实就是在 存储hive表的文件夹的下面,创建新的文件夹,

文件夹的名字是 分区字段=字段取值 这种格式的。


分区的优点:

当分区表的数据很大的时候,可以指定查询表格之中的部分数据。


设置表格分区字段需要的注意点:

1:分区字段的取值不要很多,因为这样会造成表的文件夹的下面会出现很多的小的文件夹

2: 一般可以将sql之中 where 之中出现的字段作为 分区的字段。(可以当作分区字段选取的一个参考)


查看表格是否是分区表:

desc formatted table_name


分区表的话 ,会有Partition Information


向分区表插入数据:

情况分为:

1:向表格之中插入数据,明确指定插入的分区的名字

2:向表格之中插入数据,不明确指定插入的数据的名字,而是根据插入的数据的某个字段的取值来自动决定数据

被插入到哪一个分区之中。被称为动态分区。


如何开启hive 动态分区的功能?

set  hive.exec.dynamici.partition=true;


hive 动态分区:有两种模式:

严格模式 和非严格模式

严格模式:

动态分区的时候,必须有一个分区是静态的。

非严格模式,对分区是否是静态的不在意。

如何设置 动态分区的模式?

set hive.exec.dynamic.partition.mode=nostrict

默认的模式是strict 严格模式。



插入数据时 明确指定需要插入的分区的值:

sql demo :

1:load data [local] inpath 'path' into table xxx partition(partition_fields partiton_type)

2:insert into table table_a partition(partition_fields partition_type)

select * from table_b [....];

使用insert 的时候 ,需要注意前后表的表的字段数目是匹配的,

如果表的前后字段是不匹配的话,那么就是会报错。

向分区表之中插入数据的时候,根据数据的某个字段的值,来创建分区,

以及决定数据被插入到哪一个分区之中。

sql demo:

对一个分区 进行动态分区:

首先要设置两个参数:

set  hive.exec.dynamici.partition=true;

set hive.exec.dynamic.partition.mode=nostrict

然后就是可以使用动态分区了。

分区值的推断,是根据后面查询的最后字段来决定的,只有一个分区,

那么就是查询的最后一个字段,如果是两个,那么就是从后往前的字段进行匹配。

insert into table pp partition(`date`) select name,age,`date` from par;

这里的sql demo 

是将par 的`date` 字段 作为pp表之中 `date`分区的取值。

部分动态分区:

就是多个分区,但是前面的分区的取值是取静态的,然后后面的分区的取值是未定的。

类似于 partition(country='china',city)

这里需要注意的是顺序,静态分区在前面,动态分区在后面。

然后就是多个分区,完全的动态分区:

完全动态分区的时候,就是使用后面select 查询的表进行分区数据的匹配。



动态分区在实际使用的时候会遇到的问题:

动态分区的一个使用场景:

首先加载数据到一个表格a之中,然后将这个表格之中再次转化到另外一个

表格b之中,表a转化到表b的时候,使用动态分区。

因为直接使用load 加载数据的时候,对于分区表而言,加载数据只能指定固定的分区名,

无法使用动态分区来加载数据。

相应的问题就是:

如果a表本身含有很多的文件,那么使用动态分区的时候,

那么在b表的时候,就是会产生很多的小文件。

原因如下:

如果 a表之中数据文件是200个,

那么动态分区的时候,可能会产生200个map,

然后一个map包含的数据之中,可能有多个分区的取值,

所以一个map 会产生多个文件。

所以后果就是,在新的b表之中的每个分区下面,会产生很多的小文件。

总结来说:不好的影响就是可能会产生很多的小文件。

解决的方式:

因为动态分区转化成为的mapredue job 是没有reduce,所以数目不好控制,

所以可以采用的方式,就是手动增加reduce的数目,

可以使用distributed by 来增加 reduce的数目。

insert into table table_a partition('partition_name')

select *  from table_b

dirtribute by partitoin_name

但是这样的方式,就是可能导致 reduce之间包含的数据量的不均匀。

所以解决的方法就是:

distribute by rand()

使用hash 随机分区,这样的方式,来讲数据均匀分配到reduce之中。

然后每个reduce 会产生 分区取值数目的文件,

例子: reduce数目为 200 分区的取值数位24

那么最后产生的文件的数目就是 200* 24个文件。

其实可以通过exlpain 来解析sql的执行计划,这样的话,

可以看出是否具有reduce操作。


查询表的分区信息:

show partitions table_name

向分区表之中增加分区:

alter table table_name add partition(pfield=pvalue,...)

如果表格之中有多个分区的话,那么增加分区的时候,也是多个分区

一同增加的。

删除分区:

alter table table_name drop partition(pfield=pval)

分区信息修改:

分区信息的修改分为 分区名的修改分区数据的修改两种

分区名的修改

alter table table_name partition(pfield=pvalue) rename to partition(pfield=pvalue)

分区数据的修改:

alter table table_name partition(pfield=pvalue) set location 'data_location'

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容