大数据分层次讲解学习。下面主要介绍druid常用的查询类型!共勉

"upper": "US" ,

    "ordering": "numeric",

    "upperStrict": true,

    "ordering": "lexicographic"

  },

  "resultFormat": "list",

  "columns": [

    "page",

    "countryName",

    "cityName",

    "countryIsoCode"

  ],

  "intervals": [

    "2016-06-27/2016-06-28"

  ],

  "limit": 5

}

Aggregations

Count aggregator

1

2

3

4

5

6

7

8

select

    page,

    count(*) as num

from wikipedia3

where "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-28 00:00:00'

group by page

order by num desc

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

{

  "queryType": "topN",

  "dataSource": "wikipedia3",

  "dimension": "page",

  "threshold": 5,

  "metric": "num",

  "granularity": "all",

  "aggregations": [

    {

      "type": "count",

      "name": "num"

    }

  ],

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

Sum aggregators

longSum、doubleSum、floatSum

1

2

3

4

5

6

7

8

select

    page,

    sum(delta) as num

from wikipedia3

where "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-28 00:00:00'

group by page

order by page asc

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

{

  "queryType": "topN",

  "dataSource": "wikipedia3",

  "dimension": "page",

  "threshold": 5,

  "metric": "num",

  "granularity": "all",

  "aggregations": [

    {

      "type": "longSum",

      "name": "num",

      "fieldName" : "delta"

    }

  ],

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

Min / Max aggregators

图片描述(最多50字)

doubleMin、doubleMax、floatMin、floatMax、longMin、longMax

1

2

3

4

5

6

7

8

select

    page,

    max(delta) as num

from wikipedia3

where "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-28 00:00:00'

group by page

order by page asc

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

{

  "queryType": "topN",

  "dataSource": "wikipedia3",

  "dimension": "page",

  "threshold": 5,

  "metric": "num",

  "granularity": "all",

  "aggregations": [

    {

      "type": "longMax",

      "name": "num",

      "fieldName" : "delta"

    }

  ],

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

First / Last aggregator

不能在数据摄入的时候使用,只能用于查询

Last:最大时间戳对应的数据,0 if no row exist;First最小时间戳对应的数据,0 if no row exist

JavaScript aggregator

Post Aggregations

对Aggregations的结果进行二次加工并输出,最终的结果既包含Aggregations的结果也包含Post Aggregations的结果

2. Timeseries

统计一段时间内的汇总数据

1

2

3

4

SELECT count(*) as num,

sum(added)

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

1

2

3

4

5

6

7

8

9

10

{

  "queryType": "timeseries",

  "dataSource": "wikipedia3",

  "granularity": "all",

  "aggregations": [

    { "type": "count", "name": "count" },

    { "type": "longSum", "name": "added", "fieldName": "added" }

  ],

  "intervals": [ "2016-06-27/2016-06-28" ]

}

3. TopN

返回前N条数据,并可以按照metric排序,可以支持维度,但只有一个,不能多个

1

2

3

4

5

6

7

8

SELECT

    page,

    sum(added) as num

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

group by page

order by num desc

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

{

  "queryType": "topN",

  "dataSource": "wikipedia3",

  "dimension": "page",

  "threshold": 5,

  "metric": "added",

  "granularity": "all",

  "aggregations": [

    {

      "type": "doubleSum",

      "name": "added",

      "fieldName": "added"

    }

  ],

  "intervals": [ "2016-06-27/2016-06-28" ]

}

4. GroupBy

能对指定的多个维度分组,也支持对指定的维度排序,也支持limit,但是性能比TopN和Timeseries要差很多

1

2

3

4

5

6

7

8

9

10

SELECT

    page,

    countryName,

    sum(added) as num,

    sum(delta) as num2

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

group by page,countryName

order by num desc

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

{

  "queryType": "groupBy",

  "dataSource": "wikipedia3",

  "granularity": "all",

  "dimensions": [

    "page",

    "countryName"

  ],

  "limitSpec": {

    "type": "default",

    "limit": 5,

    "columns": [

      {

        "dimension": "added",

        "direction": "descending",

        "dimensionOrder": {

          "type": "numeric"

        }

      }

    ]

  },

  "aggregations": [

    {

      "type": "longSum",

      "name": "added",

      "fieldName": "added"

    },

    {

      "type": "longSum",

      "name": "delta",

      "fieldName": "delta"

    }

  ],

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

5. Search

图片描述(最多50字)

类似于like操作,可以查询多个维度列,不支持聚合

1

2

3

4

5

6

7

SELECT

page,

countryName

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

and page like '%C' or countryName like '%C'

limit 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

{

  "queryType": "search",

  "dataSource": "wikipedia3",

  "granularity": "all",

  "dimensions": [

    "page",

    "countryName"

  ],

  "query": {

    "type": "insensitive_contains",

    "value": "C"

  },

  "sort" : {

    "type": "lexicographic"

  },

  "limit": 5,

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

6. Select

查数据,不支持聚合,但支持分页,排序,相比来说还是不错了

1

2

3

4

5

SELECT

*

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

limit 0,5

1

2

3

4

5

6

7

8

9

10

11

{

  "queryType": "select",

  "dataSource": "wikipedia3",

  "granularity": "all",

  "dimensions":[],

  "metrics":[],

  "pagingSpec":{"pagingIdentifiers": {}, "threshold":5},

  "intervals": [

    "2016-06-27/2016-06-28"

  ]

}

7. Scan

类似于Select,但不支持分页,但是如果没有分页需求,推荐使用这个,性能比Select好,所以不要选错了。

1

2

3

4

5

SELECT

page,countryName

FROM wikipedia

WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-27 23:59:59'

limit 5

1

2

3

4

5

6

7

8

9

10

11

{

  "queryType": "scan",

  "dataSource": "wikipedia3",

  "resultFormat": "list",

  "columns":["page","countryName"],

  "intervals": [

    "2016-06-27/2016-06-28"

  ],

  "batchSize":20480,

  "limit":5

}

觉得文章不错的同学可以关注我,有学习福利也会提供给大家。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容