卷积神经网络

CNN

一、卷积神经网络结构

1.全连接神经网络

基于全连接层(Affine 层)的网络

2.卷积神经网络

全连接层存在的问题:数据的形状被“忽视”了
例如,输入数据是图像时,图像通常是高、长、通道方向上的 3 维形状。但是,向全连接层输入时,需要将 3 维数据拉平为 1 维数据。实际上,前面提到的使用了 MNIST 数据集的例子中,输入图像就是 1 通道、高 28 像素、长 28 像素的(1, 28, 28)形状,但却被排成 1 列,以 784 个数据的形式输入到最开始的 Affine 层。
图像是 3 维形状,这个形状中应该含有重要的空间信息。例如,空间上邻近的像素为相似的值、RBG 的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3 维形状中可能隐藏有值得提取的本质模式。但是,因为全连接层会忽视形状,将全部的输入数据作为相同的神经元(同一维度的神经元)处理,所以无法利用与形状相关的信息。

而卷积层可以保持形状不变。当输入数据是图像时,卷积层会以 3 维数据的形式接收输入数据,并同样以 3 维数据的形式输出至下一层。因此,在 CNN 中,可以(有可能)正确理解图像等具有形状的数据。
CNN 中,有时将卷积层的输入输出数据称为特征图(feature map)。其中,卷积层的输入数据称为输入特征图(input feature map),输出数据称为输出特征图(output feature map)

基于 CNN 的网络

二、卷积层

1.卷积运算(Convolution)

卷积运算

带偏置的卷积运算

2.填充(Padding)

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等)。


幅度为 1 的填充(向输入数据的周围填入 0)

3.卷积步长(Stride)

应用滤波器的位置间隔称为步长(stride)。


步长为 2 的卷积运算

假设输入大小为 (H, W),滤波器大小为 (FH, FW),输出大小为 (OH, OW),填充为 P,步幅为 S。此时,输出大小为


4.多通道卷积

通道方向上有多个特征图时,会按通道进行输入数据和滤波器的卷积运算,并将结果相加,从而得到输出。


通道数为C

多个滤波器

5.卷积层完整处理流

卷积层处理流

卷积层处理流(批处理)

三、池化层

池化运算( Max 池化)

除了 Max 池化之外,还有 Average 池化等。相对于 Max 池化是从目标区域中取出最大值,Average 池化则是计算目标区域的平均值。在图像识别领域,主要使用 Max 池化。

池化层的特征

  • 1.没有要学习的参数

池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。

  • 2.通道数不发生变化

经过池化运算,输入数据和输出数据的通道数不会发生变化。


通道数不变性
  • 3.对微小的位置变化具有鲁棒性

输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。


微小偏差鲁棒性

四、卷积层实现

1.基于 im2col 的展开

如果老老实实地实现卷积运算,估计要重复好几层的 for 语句。这样的实现有点麻烦,而且,NumPy 中存在使用 for 语句后处理变慢的缺点(NumPy 中,访问元素时最好不要用 for 语句)。这里,我们不使用 for 语句,而是使用 im2col 这个便利的函数进行简单的实现。

im2col 是一个函数,将输入数据展开以适合滤波器(权重)。如图 7-17 所示,对 3 维的输入数据应用 im2col 后,数据转换为 2 维矩阵(正确地讲,是把包含批数量的 4 维数据转换成了 2 维数据)。



将滤波器的应用区域从头开始依次横向展开为 1 列


卷积运算的滤波器处理的细节:将滤波器纵向展开为 1 列,并计算和 im2col 展开的数据的矩阵乘积,最后转换(reshape)为输出数据的大小。

 class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = int(1 + (H + 2*self.pad - FH) / self.stride)
        out_w = int(1 + (W + 2*self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T # 滤波器的展开
        out = np.dot(col, col_W) + self.b

        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        return out

五、池化层实现

对输入数据展开池化的应用区域(2×2 的池化的例子)

池化层的实现流程:池化的应用区域内的最大值元素用灰色表示
class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        # 展开(1)
        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)

        # 最大值(2)
        out = np.max(col, axis=1)
        # 转换(3)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        return out

六、常见构筑与算法

1.一维构筑

(1)时间延迟网络(Time Delay Neural Network, TDNN)

(2)WaveNet

2.二维构筑

(1)LeNet

(2)AlexNet

3.全卷积构筑

(1)SRCNN(Super Resolution CNN)

(2)U-Net

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容