Defining unique sequence abundances 信息搬运

信息来源>https://www.drive5.com/usearch/manual/global_trimming_and_abundance.html


Defining abundance when sequence length varies

Calculating unique sequence abundance is problematic when reads of the same template sequence vary in length, e.g. because reads are truncated when the quality score drops below a threshold.

Consider two reads A and B where B is shorter but otherwise identical to A. Here, abundance could be defined in three different ways.

(1) There are two unique sequences A and B, each with abundance one.

(2) There is one unique sequence A with abundance two.

(3) There is one unique sequence B with abundance two.

All of these definitions have problems.

With (1), a given template sequence with high abundance in the amplicons will typically have many different unique sequences with low abundances because its reads are truncated to many different lengths.

With (2) the unmatched tail of A is considered to have the same abundance as the prefix of A that is identical to B. The tail has no support from other reads (it is effectively a singleton), but that information is lost and in practice long reads with noisy tails are assigned high abundances.

With (3), the shortest sequence in a set is supported by longer sequences. This is the least bad definition: if the abundance is high, the sequence is likely to be correct. However, phylogenetically and phenotypically informative bases may be lost, and the ambiguities inherent in comparing sequences of different length must now be addressed by downstream algorithms (e.g., denoising or OTU clustering). For example, if two unique sequences differ in length by one base and have one substitution, should this count as d=1 (just the substitution) or d=2 (substitution plus terminal gap)? If large variations in length are allowed, then the phylogenetic and phenotypic resolution of the sequences may vary substantially, degrading the comparability of ZOTUs or OTUs to each other for calculating diversity, predicting taxonomy and so on. These problems are avoided by ensuring that reads of the same template sequence have the same length (global trimming, implying that reads of the same template should be globally alignable, though more distantly related sequences need not be).

Methods for global trimming

The simplest method for global trimming is to truncate all reads to the same length. This is not usually necessary with overlapping Illumina paired-end reads that have been merged by a paired-read assembler. In this case, the merged sequence always terminates at the reverse primer which guarantees that reads of the same template will have the same length regardless of variations in amplicon length between different species. If multiple primers were used which do not bind to the same locus, then trimming is required to ensure that reads of the same template amplified by different primers start and end at the same position in the biological sequence. Primer-binding bases should be discarded from the reads because PCR tends to induce substitutions at mismatched positions; in most cases this is easily accomplished by discarding a fixed number of bases (the primer lengths) from each end of the sequence. There is no need to explicitly match the primer sequence in order to trim it unless there are multiple primers binding to different loci.


Global trimming

The goal of global trimming is to ensure that reads from the same template have the same length. More accurately, it should ensure that sequences start and end at exactly the same position. If you don't do this, then two reads of the same biological sequence may have different lengths, and this causes problems in calculating the abundances of unique sequences.

Other way to state the goal of global trimming is that there should be no terminal gaps in an alignment of reads of the same template.

See defining unique sequence abundance for a technical discussion explaining why this step is essential.

The appropriate strategy for global trimming depends on your reads. See also global trimming for fungal ITS reads.

Paired reads which always overlap

If the read length is long enough that the longest amplicon will given an overlap of at least, say, 32 bases, then you don't need any additional trimming:  fastq_mergepairs does everything you need. Short amplicons will create "staggered" pairs which are correctly truncated during the merging.

Paired reads which sometimes or never overlap

If the read length is not long enough to get overlaps on longer amplicons, then you can't use the reverse reads. The best strategy is simply to discard the reverse reads (R2s) and make OTUs from the forward (R1) reads alone. See below under "Unpaired reads" for the appropriate trimming strategy.

Unpaired reads which never reach the reverse primer

If you have unpaired reads which never reach the reverse primer then they should be trimmed to a fixed length. If the reads are already fixed length (e.g. forward Illumina reads), then no trimming is necessary. You might choose to trim to a shorter length if the read quality is poor towards the end of the read (see fastq_eestats2 and fastx_truncate).

Unpaired reads which sometimes or always reach the reverse primer

If a read continues past the reverse primer, then it will include adapter sequence and then random junk. The adapter and junk must be discarded. It is probably also a good idea to delete the primer sequence since PCR tends to force the primer-binding locus to match the primer. Unfortunately, there is currently no easy way to do this in USEARCH. You can use search_oligodb to find the reverse primer, but you will need to write your own script to truncate the reads. If this is a real problem for you, let me know and I'll look into making a new command for you.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容