1 hadoop自己的序列化
因为java中的序列化有太多的冗余信息,所以hadoop采用了自己的序列化机制。
2 hadoop实现
实现hadoop的序列化只需要实现接口org.apache.hadoop.io.Writable
,然后重写两个方法。
如:
package com.jiyx.test.mapred.flowStatistics.bo;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* @author jiyx
* @create 2018-10-15-19:22
*/
public class DataBean implements Writable {
private long phoneNum;
private long upFlow;
private long downFlow;
private long totalFlow;
public DataBean() {
}
public DataBean(long phoneNum, long upFlow, long downFlow) {
this.phoneNum = phoneNum;
this.downFlow = downFlow;
this.upFlow = upFlow;
this.totalFlow = upFlow + downFlow;
}
/**
* 序列化
* @param dataOutput
* @throws IOException
*/
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(phoneNum);
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(totalFlow);
}
/**
* 反序列化
* @param dataInput
* @throws IOException
*/
@Override
public void readFields(DataInput dataInput) throws IOException {
phoneNum = dataInput.readLong();
upFlow = dataInput.readLong();
downFlow = dataInput.readLong();
totalFlow = dataInput.readLong();
}
/**
* 重写toString主要是为了后面的写入文件
* @return
*/
@Override
public String toString() {
return this.upFlow + "\t" + this.downFlow + "\t" + this.totalFlow;
}
public long getPhoneNum() {
return phoneNum;
}
public void setPhoneNum(long phoneNum) {
this.phoneNum = phoneNum;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getTotalFlow() {
return totalFlow;
}
public void setTotalFlow(long totalFlow) {
this.totalFlow = totalFlow;
}
}
package com.jiyx.test.mapred.flowStatistics;
import com.jiyx.test.mapred.flowStatistics.bo.DataBean;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* Job
* @author jiyx
* @create 2018-10-15-19:21
*/
public class FlowStatistics {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance();
job.setJarByClass(FlowStatistics.class);
job.setMapperClass(FlowStatisticsMapper.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
job.setReducerClass(FlowStatisticsReducer.class);
// 这块需要注意的是自己踩了一个坑,就是将key和value整反了
// 然后就会出现异常java.io.IOException: Initialization of all the collectors failed. Error in last collector was:java.lang.ClassCastException: class com.jiyx.test.mapred.flowStatistics.bo.DataBean
// 所以这里最好注意下
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(DataBean.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
package com.jiyx.test.mapred.flowStatistics;
import com.jiyx.test.mapred.flowStatistics.bo.DataBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* Map
* @author jiyx
* @create 2018-10-15-19:42
*/
public class FlowStatisticsMapper extends Mapper<LongWritable, Text, LongWritable, DataBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] datas = value.toString().split("\t");
long phoneNum = Long.parseLong(datas[1]);
long upFlow = Long.parseLong(datas[8]);
long downFlow = Long.parseLong(datas[9]);
context.write(new LongWritable(phoneNum), new DataBean(phoneNum, upFlow, downFlow));
}
}
package com.jiyx.test.mapred.flowStatistics;
import com.jiyx.test.mapred.flowStatistics.bo.DataBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* Reduce
* @author jiyx
* @create 2018-10-15-19:54
*/
public class FlowStatisticsReducer extends Reducer<LongWritable, DataBean, LongWritable, DataBean> {
@Override
protected void reduce(LongWritable key, Iterable<DataBean> values, Context context) throws IOException, InterruptedException {
long upFlowSum = 0;
long downFlowSum = 0;
for (DataBean value : values) {
upFlowSum += value.getUpFlow();
downFlowSum += value.getDownFlow();
}
context.write(key, new DataBean(key.get(), upFlowSum, downFlowSum));
}
}