思路整合

亲缘系数的计算原则就是利用两个个体之间共享等位基因的程度。因为亲缘系数计算的是两个个体之间的关系,那么它与个体杂合度的关系就不能建立,我想暂时建立个体之间杂合位点的差异程度与亲缘系数之间的关系。亲缘系数很好计算,个体之间杂合位点的差异程度可以将个体的杂合位点都挑选出来,然后比对个体之间位点不同的概率,如果A个体杂合位点数为100,B个体的杂合位点数为120,两者位点数为相同的数量为50,那么不相同的概率为1-(2*50)/ (100+120)。计算出位点不相同的概率再与亲缘系数进行比较。预测,位点不相同的概率越高,亲缘系数越小,两者成反比。再看相关系数R2。
我们保证种群的遗传多样性首先就是要保证种群的基因组杂合度。除了直观反应杂合度的系数,还有ROH和遗传负荷load也能间接反映杂合度,比如我们想要避免近交,就是要考虑个体之间的ROH,我们不希望个体的长段ROH一直保留我们希望在进行配对时,有更多的机会将长段ROH在后代中变为短段ROH。这是其中一个目标。这其实就是间接利用基因组中变异位点的组合产生更多的杂合位点实现的。另一个目标就是,对遗传负荷的关注,我们希望遗传负荷的位点不要纯合,尽量保证该位点为无害突变或者为隐性杂合负荷。
我们把基因组杂合度看成一把尺子,这把尺子很长,能从全局来展示个体的杂合情况。基因组的功能能让我们关注更多的局部表现。比如我们能让基因组这种长段ROH变少,同时也能避免更多的配对导致遗传负荷变得纯合。

1.杂合度与ROH数量相关性

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_rohnumber.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['ROH(number)']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(10, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='ROH(number)', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
    x_pos = data[data['species'] == species]['het'].mean()
    y_pos = data[data['species'] == species]['ROH(number)'].mean()
    plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and ROH Number by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('ROH Number')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_roh_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()

2.杂合度与ROH总长度相关性

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_rohlength.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['ROH(KB)']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(8, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='ROH(KB)', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
    x_pos = data[data['species'] == species]['het'].mean()
    y_pos = data[data['species'] == species]['ROH(KB)'].mean()
    plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and ROH Length by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('ROH Length')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_length_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()

3.杂合度与KBAVG相关性

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_AveKB.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['ROH(KBAVG)']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(8, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='ROH(KBAVG)', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
   x_pos = data[data['species'] == species]['het'].mean()
   y_pos = data[data['species'] == species]['ROH(KBAVG)'].mean()
   plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and ROH(KBAVG) by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('ROH Ave_Len')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_AveLen_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()

4.杂合度与Froh

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_Froh.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['Froh']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(8, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='Froh', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
    x_pos = data[data['species'] == species]['het'].mean()
    y_pos = data[data['species'] == species]['Froh'].mean()
    plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and ROH(KBAVG) by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('Froh')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_Froh_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()

5.杂合度与Load

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_Load.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['Load']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(8, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='Load', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
    x_pos = data[data['species'] == species]['het'].mean()
    y_pos = data[data['species'] == species]['Load'].mean()
    plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and Load by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('Load')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_Load_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()

6.杂合度与R亲缘系数

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data from the uploaded file
file_path = 'het_R.xlsx'
data = pd.read_excel(file_path)

# Calculate the correlation coefficient for each species
correlation_data = data.groupby('species').apply(lambda x: x['het'].corr(x['Relationship']) ** 2)

# Set the style for the plot
sns.set(style="whitegrid")

# Create a scatter plot with the R^2 values annotated
plt.figure(figsize=(8, 6))
scatter_plot = sns.scatterplot(data=data, x='het', y='Relationship', hue='species', palette='deep', s=100)

# Annotate the R^2 values on the plot
for species, r_squared in correlation_data.items():
    x_pos = data[data['species'] == species]['het'].mean()
    y_pos = data[data['species'] == species]['Relationship'].mean()
    plt.text(x_pos, y_pos, f'R² = {r_squared:.3f}', fontsize=12, ha='right')

# Set the title and labels
scatter_plot.set_title('Correlation between Heterozygosity and R by Species with R² values')
scatter_plot.set_xlabel('Heterozygosity')
scatter_plot.set_ylabel('Relationship')

# Display the plot with legend
plt.legend(title='Species')

# Save the plot as a PDF file
output_file_path = 'het_R_correlation.pdf'
plt.savefig(output_file_path, format='pdf')

# Show the plot
plt.show()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容