扎克伯格的贾维斯没那么牛? 那我们关注它干嘛?

最近,扎克伯格终于将亲自编程的AI管家“贾维斯”以视频的形式公布于众,又在社交网站上一起一片热议和围观。


腾讯视频


扎克伯格的贾维斯不止能够控制室内温度、亮度、播放音乐,甚至请来了好莱坞著名演员摩根·弗里曼来配音,这位老艺术家曾在《冒牌天神》中扮演过上帝。(贾维斯的配音故事可以戳我们以前的文章回顾

每天听着上帝的声音对你说“Good morning”“Good night”该是多么神奇的体验。

然而小扎在自己的贴文中也说了,视频中展示的贾维斯的功能也有突出“幽默”的一方面,真正的贾维斯其实还需要不断的完善。这一点在贾维斯披露之前也被印证了。FASTCOMPANY曾受邀进入了小扎的家现场体验了贾维斯的“服务”,写下了这样的报道:

扎克伯格还建立了响应语音指令的系统,并通过定制iOS应用控制。但这部分展示不太理想,他重复了四次指令才让系统弄明白:天黑前不要开灯。扎克伯格略显尴尬地说:“喔,这应该是它最失败的表现了!”

不过,贾维斯播放音乐的展示还算成功。扎克伯格下令:“给我们放段音乐吧!”几秒钟后,大卫·库塔(David Guetta)的《Would I Lie to You》 开始通过客厅扬声器响起来。他说了两次“把音量调高”后,系统照做无误。最后,他同样说了两次才让系统停止播放。

这非常有意思,因为从新闻来看“天黑前不要开灯”和“把音量调高”的失误显然都不是命令理解(语义)上有问题,否则你说八百遍贾维斯该不好使还是不好使。如果不是语义的问题,那显然就会和各大公司所宣称的已经被解决的问题:语音识别有关。

标准环境解决≠真实效果好

关于语音识别的精度今年官方的报道一般是这样的:

11月21日到23日,搜狗、百度和科大讯飞三家公司接连召开了三场发布会向外界展示了自己在语音识别和机器翻译等方面的最新进展。值得注意的是,这三家公司几乎在同一时段宣布了各自中文语音识别准确率达到了97%。

类似的报道也会发生在微软等的身上,我们假设Facebook做的不是太差,水平也与此类似达到97%的准确率。

▲视频中小扎对贾维斯说“shoot me a new grey t-shirt ”,贾维斯就为他投出了一件T恤

97%的具体含义是100个单词上只有3个错误(删除、被替换、被插入),那么问题就来了,如果真实环境里真的达到了这个精度,那么小扎的演示可能会比上面的视频演示更加犀利——比如在开party的时候听主人的命令调节音乐和灯光啊,无论走到家里哪个角落都能响应主人的指令啊这样。

那问题出在那里?

关键问题并不复杂,扎克伯格用手机当做家庭里的终端,这样距离稍微一远,环境稍微嘈杂一点,那再好的手机也没办法帮Jarvis听清楚你在说什么。

▲对着各种手机助手努力说过话的你一定能懂

手机本身是设计给近场(近身场景:包括距离话筒距离近、环境音单纯)用的,手机上的语音识别基本也是给近场优化过的,怎么也不能弥补远场上带来的不适应。

扎克伯格对此非常坦诚,他在贴文中说语音识别更多时候是专门场景下好用,想做一个万能的版本仍然还很遥远。语音识别只能做限定场景的最佳。

▲比如在夜深人静的时候给自己开个灯什么的

目前贾维斯还属于扎克伯格的个人作品,尚有不完善的地方也能让人理解。不过实际上小扎在其充满学习乐趣的分享之中,很直接地向世人灌注了他对未来的想像,并且通过实作让大家知道,即便是一人之力,也能通过各种资源将未来的世界带至自己的身边,将梦想化为理想。

同时作为Facebook的CEO,如果他利用手边所拥有的全球顶尖的工程师之力与社交网站所取得的深度学习资源,要说哪天贾维斯真的跟复仇者联盟的故事发展一样进化成为真正的超人幻视,似乎也不见得是痴人说梦的事情。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容