Vue生命周期函数
Vue实例有一个完整的生命周期,也就是从开始创建、初始化数据、编译模板、挂载Dom、渲染→更新→渲染、销毁等一系列过程,我们称这是Vue的生命周期。通俗说就是Vue实例从创建到销毁的过程,就是生命周期。
每一个组件或者实例都会经历一个完整的生命周期,总共分为三个阶段:初始化、运行中、销毁。
- 实例、组件通过new Vue() 创建出来之后会初始化事件和生命周期,然后就会执行beforeCreate钩子函数,这个时候,数据还没有挂载呢,只是一个空壳,无法访问到数据和真实的dom,一般不做操作
- 挂载数据,绑定事件等等,然后执行created函数,这个时候已经可以使用到数据,也可以更改数据,在这里更改数据不会触发updated函数,在这里可以在渲染前倒数第二次更改数据的机会,不会触发其他的钩子函数,一般可以在这里做初始数据的获取
- 接下来开始找实例或者组件对应的模板,编译模板为虚拟dom放入到render函数中准备渲染,然后执行beforeMount钩子函数,在这个函数中虚拟dom已经创建完成,马上就要渲染,在这里也可以更改数据,不会触发updated,在这里可以在渲染前最后一次更改数据的机会,不会触发其他的钩子函数,一般可以在这里做初始数据的获取
- 接下来开始render,渲染出真实dom,然后执行mounted钩子函数,此时,组件已经出现在页面中,数据、真实dom都已经处理好了,事件都已经挂载好了,可以在这里操作真实dom等事情...
- 当组件或实例的数据更改之后,会立即执行beforeUpdate,然后vue的虚拟dom机制会重新构建虚拟dom与上一次的虚拟dom树利用diff算法进行对比之后重新渲染,一般不做什么事儿
- 当更新完成后,执行updated,数据已经更改完成,dom也重新render完成,可以操作更新后的虚拟dom
- 当经过某种途径调用$destroy方法后,立即执行beforeDestroy,一般在这里做一些善后工作,例如清除计时器、清除非指令绑定的事件等等
- 组件的数据绑定、监听...去掉后只剩下dom空壳,这个时候,执行destroyed,在这里做善后工作也可以
虚拟DOM
一、真实DOM和其解析流程
浏览器渲染引擎工作流程都差不多,大致分为5步,创建DOM树——创建StyleRules——创建Render树——布局Layout——绘制Painting
第一步,用HTML分析器,分析HTML元素,构建一颗DOM树(标记化和树构建)。
第二步,用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表。
第三步,将DOM树和样式表,关联起来,构建一颗Render树(这一过程又称为Attachment)。每个DOM节点都有attach方法,接受样式信息,返回一个render对象(又名renderer)。这些render对象最终会被构建成一颗Render树。
第四步,有了Render树,浏览器开始布局,为每个Render树上的节点确定一个在显示屏上出现的精确坐标。
第五步,Render树和节点显示坐标都有了,就调用每个节点paint方法,把它们绘制出来。
DOM树的构建是文档加载完成开始的?构建DOM数是一个渐进过程,为达到更好用户体验,渲染引擎会尽快将内容显示在屏幕上。它不必等到整个HTML文档解析完毕之后才开始构建render树和布局。
Render树是DOM树和CSSOM树构建完毕才开始构建的吗?这三个过程在实际进行的时候又不是完全独立,而是会有交叉。会造成一边加载,一遍解析,一遍渲染的工作现象。
CSS的解析是从右往左逆向解析的(从DOM树的下-上解析比上-下解析效率高),嵌套标签越多,解析越慢。
二、JS操作真实DOM的代价!
用我们传统的开发模式,原生JS或JQ操作DOM时,浏览器会从构建DOM树开始从头到尾执行一遍流程。在一次操作中,我需要更新10个DOM节点,浏览器收到第一个DOM请求后并不知道还有9次更新操作,因此会马上执行流程,最终执行10次。例如,第一次计算完,紧接着下一个DOM更新请求,这个节点的坐标值就变了,前一次计算为无用功。计算DOM节点坐标值等都是白白浪费的性能。即使计算机硬件一直在迭代更新,操作DOM的代价仍旧是昂贵的,频繁操作还是会出现页面卡顿,影响用户体验。
三、为什么需要虚拟DOM,它有什么好处?
Web界面由DOM树(树的意思是数据结构)来构建,当其中一部分发生变化时,其实就是对应某个DOM节点发生了变化。
虚拟DOM就是为了解决浏览器性能问题而被设计出来的。如前,若一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地一个JS对象中,最终将这个JS对象一次性attch到DOM树上,再进行后续操作,避免大量无谓的计算量。所以,用JS对象模拟DOM节点的好处是,页面的更新可以先全部反映在JS对象(虚拟DOM)上,操作内存中的JS对象的速度显然要更快,等更新完成后,再将最终的JS对象映射成真实的DOM,交由浏览器去绘制。
四、实现虚拟DOM
Element方法实现
第一个参数是节点名(如div),第二个参数是节点的属性(如class),第三个参数是子节点(如ul的li)。除了这三个参数会被保存在对象上外,还保存了key和count。其相当于形成了虚拟DOM树。
[图片上传失败...(image-43ec14-1564492418384)]
虚拟DOM树
有了JS对象后,最终还需要将其映射成真实DOM
[图片上传失败...(image-95b17c-1564492418384)]
虚拟DOM对象映射成真实DOM
我们已经完成了创建虚拟DOM并将其映射成真实DOM,这样所有的更新都可以先反应到虚拟DOM上,如何反应?需要用到Diff算法。
两棵树如果完全比较时间复杂度是O(n^3),但参照《深入浅出React和Redux》一书中的介绍,React的Diff算法的时间复杂度是O(n)。要实现这么低的时间复杂度,意味着只能平层的比较两棵树的节点,放弃了深度遍历。这样做,似乎牺牲掉了一定的精确性来换取速度,但考虑到现实中前端页面通常也不会跨层移动DOM元素,这样做是最优的。
深度优先遍历,记录差异
Diff操作
在实际代码中,会对新旧两棵树进行一个深度的遍历,每个节点都会有一个标记。每遍历到一个节点就把该节点和新的树进行对比,如果有差异就记录到一个对象中。
下面我们创建一棵新树,用于和之前的树进行比较,来看看Diff算法是怎么操作的。
平层Diff,只有以下4种情况:
1、节点类型变了,例如下图中的P变成了H3。我们将这个过程称之为REPLACE。直接将旧节点卸载并装载新节点。旧节点包括下面的子节点都将被卸载,如果新节点和旧节点仅仅是类型不同,但下面的所有子节点都一样时,这样做效率不高。但为了避免O(n^3)的时间复杂度,这样是值得的。这也提醒了开发者,应该避免无谓的节点类型的变化,例如运行时将div变成p没有意义。
2、节点类型一样,仅仅属性或属性值变了。我们将这个过程称之为PROPS。此时不会触发节点卸载和装载,而是节点更新。
查找不同属性方法
3、文本变了,文本对也是一个Text Node,也比较简单,直接修改文字内容就行了,我们将这个过程称之为TEXT。
4、移动/增加/删除 子节点,我们将这个过程称之为REORDER。看一个例子,在A、B、C、D、E五个节点的B和C中的BC两个节点中间加入一个F节点。
例子
我们简单粗暴的做法是遍历每一个新虚拟DOM的节点,与旧虚拟DOM对比相应节点对比,在旧DOM中是否存在,不同就卸载原来的按上新的。这样会对F后边每一个节点进行操作。卸载C,装载F,卸载D,装载C,卸载E,装载D,装载E。效率太低。
如果我们在JSX里为数组或枚举型元素增加上key后,它能够根据key,直接找到具体位置进行操作,效率比较高。常见的最小编辑距离问题,可以用Levenshtein Distance算法来实现,时间复杂度是O(M*N),但通常我们只要一些简单的移动就能满足需要,降低精确性,将时间复杂度降低到O(max(M,N))即可。
映射成真实DOM
虚拟DOM有了,Diff也有了,现在就可以将Diff应用到真实DOM上了。深度遍历DOM将Diff的内容更新进去。
根据Diff更新DOM
我们会有两个虚拟DOM(js对象,new/old进行比较diff),用户交互我们操作数据变化new虚拟DOM,old虚拟DOM会映射成实际DOM(js对象生成的DOM文档)通过DOM fragment操作给浏览器渲染。当修改new虚拟DOM,会把newDOM和oldDOM通过diff算法比较,得出diff结果数据表(用4种变换情况表示)。再把diff结果表通过DOM fragment更新到浏览器DOM中。
虚拟DOM的存在的意义?vdom 的真正意义是为了实现跨平台,服务端渲染,以及提供一个性能还算不错 Dom 更新策略。vdom 让整个 mvvm 框架灵活了起来
Diff算法只是为了虚拟DOM比较替换效率更高,通过Diff算法得到diff算法结果数据表(需要进行哪些操作记录表)。原本要操作的DOM在vue这边还是要操作的,只不过用到了js的DOM fragment来操作dom(统一计算出所有变化后统一更新一次DOM)进行浏览器DOM一次性更新。其实DOM fragment我们不用平时发开也能用,但是这样程序员写业务代码就用把DOM操作放到fragment里,这就是框架的价值,程序员才能专注于写业务代码。
Vue 2.0 的 virtual-dom 实现简析
virtual-dom
(后文简称vdom
)的概念大规模的推广还是得益于react
出现,virtual-dom
也是react
这个框架的非常重要的特性之一。相比于频繁的手动去操作dom
而带来性能问题,vdom
很好的将dom
做了一层映射关系,进而将在我们本需要直接进行dom
的一系列操作,映射到了操作vdom
,而vdom
上定义了关于真实dom
的一些关键的信息,vdom
完全是用js
去实现,和宿主浏览器没有任何联系,此外得益于js
的执行速度,将原本需要在真实dom
进行的创建节点
,删除节点
,添加节点
等一系列复杂的dom
操作全部放到vdom
中进行,这样就通过操作vdom
来提高直接操作的dom
的效率和性能。
Vue
在2.0
版本也引入了vdom
。其vdom
算法是基于snabbdom算法所做的修改。
在Vue
的整个应用生命周期当中,每次需要更新视图的时候便会使用vdom
。那么在Vue
当中,vdom
是如何和Vue
这个框架融合在一起工作的呢?以及大家常常提到的vdom
的diff
算法又是怎样的呢?接下来就通过这篇文章简单的向大家介绍下Vue
当中的vdom
是如何去工作的。
首先,我们还是来看下Vue
生命周期当中初始化的最后阶段:将vm
实例挂载到dom
上,源码在src/core/instance/init.js
Vue.prototype._init = function () {
...
vm.$mount(vm.$options.el)
...
}
实际上是调用了src/core/instance/lifecycle.js中的mountComponent
方法,
mountComponent
函数的定义是:
export function mountComponent (
vm: Component,
el: ?Element,
hydrating?: boolean
): Component {
// vm.$el为真实的node
vm.$el = el
// 如果vm上没有挂载render函数
if (!vm.$options.render) {
// 空节点
vm.$options.render = createEmptyVNode
}
// 钩子函数
callHook(vm, 'beforeMount')
let updateComponent
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
...
} else {
// updateComponent为监听函数, new Watcher(vm, updateComponent, noop)
updateComponent = () => {
// Vue.prototype._render 渲染函数
// vm._render() 返回一个VNode
// 更新dom
// vm._render()调用render函数,会返回一个VNode,在生成VNode的过程中,会动态计算getter,同时推入到dep里面
vm._update(vm._render(), hydrating)
}
}
// 新建一个_watcher对象
// vm实例上挂载的_watcher主要是为了更新DOM
// vm/expression/cb
vm._watcher = new Watcher(vm, updateComponent, noop)
hydrating = false
// manually mounted instance, call mounted on self
// mounted is called for render-created child components in its inserted hook
if (vm.$vnode == null) {
vm._isMounted = true
callHook(vm, 'mounted')
}
return vm
}
注意上面的代码中定义了一个updateComponent
函数,这个函数执行的时候内部会调用vm._update(vm._render(), hyddrating)
方法,其中vm._render
方法会返回一个新的vnode
,(关于vm_render
是如何生成vnode
的建议大家看看vue
的关于compile
阶段的代码),然后传入vm._update
方法后,就用这个新的vnode
和老的vnode
进行diff
,最后完成dom
的更新工作。那么updateComponent
都是在什么时候去进行调用呢?
vm._watcher = new Watcher(vm, updateComponent, noop)
实例化一个watcher
,在求值的过程中this.value = this.lazy ? undefined : this.get()
,会调用this.get()
方法,因此在实例化的过程当中Dep.target
会被设为这个watcher
,通过调用vm._render()
方法生成新的Vnode
并进行diff
的过程中完成了模板当中变量依赖收集工作。即这个watcher
被添加到了在模板当中所绑定变量的依赖当中。一旦model
中的响应式的数据发生了变化,这些响应式的数据所维护的dep
数组便会调用dep.notify()
方法完成所有依赖遍历执行的工作,这里面就包括了视图的更新即updateComponent
方法,它是在mountComponent
中的定义的。
updateComponent
方法的定义是:
updateComponent = () => {
vm._update(vm._render(), hydrating)
}
完成视图的更新工作事实上就是调用了vm._update
方法,这个方法接收的第一个参数是刚生成的Vnode
,调用的vm._update
方法(src/core/instance/lifecycle.js)的定义是
Vue.prototype._update = function (vnode: VNode, hydrating?: boolean) {
const vm: Component = this
if (vm._isMounted) {
callHook(vm, 'beforeUpdate')
}
const prevEl = vm.$el
const prevVnode = vm._vnode
const prevActiveInstance = activeInstance
activeInstance = vm
// 新的vnode
vm._vnode = vnode
// Vue.prototype.__patch__ is injected in entry points
// based on the rendering backend used.
// 如果需要diff的prevVnode不存在,那么就用新的vnode创建一个真实dom节点
if (!prevVnode) {
// initial render
// 第一个参数为真实的node节点
vm.$el = vm.__patch__(
vm.$el, vnode, hydrating, false /* removeOnly */,
vm.$options._parentElm,
vm.$options._refElm
)
} else {
// updates
// 如果需要diff的prevVnode存在,那么首先对prevVnode和vnode进行diff,并将需要的更新的dom操作已patch的形式打到prevVnode上,并完成真实dom的更新工作
vm.$el = vm.__patch__(prevVnode, vnode)
}
activeInstance = prevActiveInstance
// update __vue__ reference
if (prevEl) {
prevEl.__vue__ = null
}
if (vm.$el) {
vm.$el.__vue__ = vm
}
// if parent is an HOC, update its $el as well
if (vm.$vnode && vm.$parent && vm.$vnode === vm.$parent._vnode) {
vm.$parent.$el = vm.$el
}
}
在这个方法当中最为关键的就是vm.__patch__
方法,这也是整个virtaul-dom
当中最为核心的方法,主要完成了prevVnode
和vnode
的diff
过程并根据需要操作的vdom
节点打patch
,最后生成新的真实dom
节点并完成视图的更新工作。
接下来就让我们看下vm.__patch__
里面到底发生了什么:
function patch (oldVnode, vnode, hydrating, removeOnly, parentElm, refElm) {
// 当oldVnode不存在时
if (isUndef(oldVnode)) {
// 创建新的节点
createElm(vnode, insertedVnodeQueue, parentElm, refElm)
} else {
const isRealElement = isDef(oldVnode.nodeType)
if (!isRealElement && sameVnode(oldVnode, vnode)) {
// patch existing root node
// 对oldVnode和vnode进行diff,并对oldVnode打patch
patchVnode(oldVnode, vnode, insertedVnodeQueue, removeOnly)
}
}
}
在对oldVnode
和vnode
类型判断中有个sameVnode
方法,这个方法决定了是否需要对oldVnode
和vnode
进行diff
及patch
的过程。
function sameVnode (a, b) {
return (
a.key === b.key &&
a.tag === b.tag &&
a.isComment === b.isComment &&
isDef(a.data) === isDef(b.data) &&
sameInputType(a, b)
)
}
sameVnode会对传入的2个vnode进行基本属性的比较,只有当基本属性相同的情况下才认为这个2个vnode只是局部发生了更新,然后才会对这2个vnode进行diff,如果2个vnode的基本属性存在不一致的情况,那么就会直接跳过diff的过程,进而依据vnode新建一个真实的dom,同时删除老的dom节点。
vnode
基本属性的定义可以参见源码:src/vdom/vnode.js里面对于vnode
的定义。
constructor (
tag?: string,
data?: VNodeData, // 关于这个节点的data值,包括attrs,style,hook等
children?: ?Array<VNode>, // 子vdom节点
text?: string, // 文本内容
elm?: Node, // 真实的dom节点
context?: Component, // 创建这个vdom的上下文
componentOptions?: VNodeComponentOptions
) {
this.tag = tag
this.data = data
this.children = children
this.text = text
this.elm = elm
this.ns = undefined
this.context = context
this.functionalContext = undefined
this.key = data && data.key
this.componentOptions = componentOptions
this.componentInstance = undefined
this.parent = undefined
this.raw = false
this.isStatic = false
this.isRootInsert = true
this.isComment = false
this.isCloned = false
this.isOnce = false
}
// DEPRECATED: alias for componentInstance for backwards compat.
/* istanbul ignore next */
get child (): Component | void {
return this.componentInstance
}
}
每一个vnode
都映射到一个真实的dom
节点上。其中几个比较重要的属性:
-
tag
属性即这个vnode
的标签属性 -
data
属性包含了最后渲染成真实dom
节点后,节点上的class
,attribute
,style
以及绑定的事件 -
children
属性是vnode
的子节点 -
text
属性是文本属性 -
elm
属性为这个vnode
对应的真实dom
节点 -
key
属性是vnode
的标记,在diff
过程中可以提高diff
的效率,后文有讲解
比如,我定义了一个vnode
,它的数据结构是:
{
tag: 'div'
data: {
id: 'app',
class: 'page-box'
},
children: [
{
tag: 'p',
text: 'this is demo'
}
]
}
最后渲染出的实际的dom
结构就是:
<div id="app" class="page-box">
<p>this is demo</p>
</div>
让我们再回到patch
函数当中,在当oldVnode不存在的时候,这个时候是root节点
初始化的过程,因此调用了createElm(vnode, insertedVnodeQueue, parentElm, refElm)
方法去创建一个新的节点。而当oldVnode是vnode且sameVnode(oldVnode, vnode)2个节点的基本属性相同,那么就进入了2个节点的diff
过程。
diff
的过程主要是通过调用patchVnode
(src/core/vdom/patch.js)方法进行的:
function patchVnode(oldVnode, vnode, insertedVnodeQueue, removeOnly) {
...
}
if (isDef(data) && isPatchable(vnode)) {
// cbs保存了hooks钩子函数: 'create', 'activate', 'update', 'remove', 'destroy'
// 取出cbs保存的update钩子函数,依次调用,更新attrs/style/class/events/directives/refs等属性
for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
}
更新真实dom
节点的data
属性,相当于对dom
节点进行了预处理的操作
接下来:
...
const elm = vnode.elm = oldVnode.elm
const oldCh = oldVnode.children
const ch = vnode.children
// 如果vnode没有文本节点
if (isUndef(vnode.text)) {
// 如果oldVnode的children属性存在且vnode的属性也存在
if (isDef(oldCh) && isDef(ch)) {
// updateChildren,对子节点进行diff
if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
} else if (isDef(ch)) {
// 如果oldVnode的text存在,那么首先清空text的内容
if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
// 然后将vnode的children添加进去
addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
} else if (isDef(oldCh)) {
// 删除elm下的oldchildren
removeVnodes(elm, oldCh, 0, oldCh.length - 1)
} else if (isDef(oldVnode.text)) {
// oldVnode有子节点,而vnode没有,那么就清空这个节点
nodeOps.setTextContent(elm, '')
}
} else if (oldVnode.text !== vnode.text) {
// 如果oldVnode和vnode文本属性不同,那么直接更新真是dom节点的文本元素
nodeOps.setTextContent(elm, vnode.text)
}
这其中的diff
过程中又分了好几种情况,oldCh
为oldVnode
的子节点,ch
为Vnode
的子节点:
- 首先进行文本节点的判断,若
oldVnode.text !== vnode.text
,那么就会直接进行文本节点的替换; - 在
vnode
没有文本节点的情况下,进入子节点的diff
; - 当
oldCh
和ch
都存在且不相同的情况下,调用updateChildren
对子节点进行diff
; - 若
oldCh
不存在,ch
存在,首先清空oldVnode
的文本节点,同时调用addVnodes
方法将ch
添加到elm
真实dom
节点当中; - 若
oldCh
存在,ch
不存在,则删除elm
真实节点下的oldCh
子节点; - 若
oldVnode
有文本节点,而vnode
没有,那么就清空这个文本节点。
这里着重分析下updateChildren
(src/core/vdom/patch.js)方法,它也是整个diff
过程中最重要的环节:
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {
// 为oldCh和newCh分别建立索引,为之后遍历的依据
let oldStartIdx = 0
let newStartIdx = 0
let oldEndIdx = oldCh.length - 1
let oldStartVnode = oldCh[0]
let oldEndVnode = oldCh[oldEndIdx]
let newEndIdx = newCh.length - 1
let newStartVnode = newCh[0]
let newEndVnode = newCh[newEndIdx]
let oldKeyToIdx, idxInOld, elmToMove, refElm
// 直到oldCh或者newCh被遍历完后跳出循环
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
if (isUndef(oldStartVnode)) {
oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left
} else if (isUndef(oldEndVnode)) {
oldEndVnode = oldCh[--oldEndIdx]
} else if (sameVnode(oldStartVnode, newStartVnode)) {
patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue)
oldStartVnode = oldCh[++oldStartIdx]
newStartVnode = newCh[++newStartIdx]
} else if (sameVnode(oldEndVnode, newEndVnode)) {
patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue)
oldEndVnode = oldCh[--oldEndIdx]
newEndVnode = newCh[--newEndIdx]
} else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right
patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue)
canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))
oldStartVnode = oldCh[++oldStartIdx]
newEndVnode = newCh[--newEndIdx]
} else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left
patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue)
// 插入到老的开始节点的前面
canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)
oldEndVnode = oldCh[--oldEndIdx]
newStartVnode = newCh[++newStartIdx]
} else {
// 如果以上条件都不满足,那么这个时候开始比较key值,首先建立key和index索引的对应关系
if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : null
// 如果idxInOld不存在
// 1. newStartVnode上存在这个key,但是oldKeyToIdx中不存在
// 2. newStartVnode上并没有设置key属性
if (isUndef(idxInOld)) { // New element
// 创建新的dom节点
// 插入到oldStartVnode.elm前面
// 参见createElm方法
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
} else {
elmToMove = oldCh[idxInOld]
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && !elmToMove) {
warn(
'It seems there are duplicate keys that is causing an update error. ' +
'Make sure each v-for item has a unique key.'
)
// 将找到的key一致的oldVnode再和newStartVnode进行diff
if (sameVnode(elmToMove, newStartVnode)) {
patchVnode(elmToMove, newStartVnode, insertedVnodeQueue)
oldCh[idxInOld] = undefined
// 移动node节点
canMove && nodeOps.insertBefore(parentElm, newStartVnode.elm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
} else {
// same key but different element. treat as new element
// 创建新的dom节点
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
}
}
}
}
// 如果最后遍历的oldStartIdx大于oldEndIdx的话
if (oldStartIdx > oldEndIdx) { // 如果是老的vdom先被遍历完
refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm
// 添加newVnode中剩余的节点到parentElm中
addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue)
} else if (newStartIdx > newEndIdx) { // 如果是新的vdom先被遍历完,则删除oldVnode里面所有的节点
// 删除剩余的节点
removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx)
}
}
在开始遍历diff
前,首先给oldCh
和newCh
分别分配一个startIndex
和endIndex
来作为遍历的索引,当oldCh
或者newCh
遍历完后(遍历完的条件就是oldCh
或者newCh
的startIndex >= endIndex
),就停止oldCh
和newCh
的diff
过程。接下来通过实例来看下整个diff
的过程(节点属性中不带key
的情况):
- 首先从第一个节点开始比较,不管是
oldCh
还是newCh
的起始或者终止节点都不存在sameVnode
,同时节点属性中是不带key
标记的,因此第一轮的diff
完后,newCh
的startVnode
被添加到oldStartVnode
的前面,同时newStartIndex
前移一位;
- 第二轮的
diff
中,满足sameVnode(oldStartVnode, newStartVnode)
,因此对这2个vnode
进行diff
,最后将patch
打到oldStartVnode
上,同时oldStartVnode
和newStartIndex
都向前移动一位
- 第三轮的
diff
中,满足sameVnode(oldEndVnode, newStartVnode)
,那么首先对oldEndVnode
和newStartVnode
进行diff
,并对oldEndVnode
进行patch
,并完成oldEndVnode
移位的操作,最后newStartIndex
前移一位,oldStartVnode
后移一位;
- 第四轮的
diff
中,过程同步骤3;
- 第五轮的
diff
中,同过程1;
- 遍历的过程结束后,
newStartIdx > newEndIdx
,说明此时oldCh
存在多余的节点,那么最后就需要将这些多余的节点删除。
在vnode
不带key
的情况下,每一轮的diff
过程当中都是起始
和结束
节点进行比较,直到oldCh
或者newCh
被遍历完。而当为vnode
引入key
属性后,在每一轮的diff
过程中,当起始
和结束
节点都没有找到sameVnode
时,首先对oldCh
中进行key
值与索引的映射:
if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : null
createKeyToOldIdx
(src/core/vdom/patch.js)方法,用以将oldCh
中的key
属性作为键
,而对应的节点的索引作为值
。然后再判断在newStartVnode
的属性中是否有key
,且是否在oldKeyToIndx
中找到对应的节点。
- 如果不存在这个
key
,那么就将这个newStartVnode
作为新的节点创建且插入到原有的root
的子节点中:
if (isUndef(idxInOld)) { // New element
// 创建新的dom节点
// 插入到oldStartVnode.elm前面
// 参见createElm方法
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
}
- 如果存在这个
key
,那么就取出oldCh
中的存在这个key
的vnode
,然后再进行diff
的过程:
elmToMove = oldCh[idxInOld]
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && !elmToMove) {
// 将找到的key一致的oldVnode再和newStartVnode进行diff
if (sameVnode(elmToMove, newStartVnode)) {
patchVnode(elmToMove, newStartVnode, insertedVnodeQueue)
// 清空这个节点
oldCh[idxInOld] = undefined
// 移动node节点
canMove && nodeOps.insertBefore(parentElm, newStartVnode.elm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
} else {
// same key but different element. treat as new element
// 创建新的dom节点
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
newStartVnode = newCh[++newStartIdx]
}
通过以上分析,给vdom
上添加key
属性后,遍历diff
的过程中,当起始点
, 结束点
的搜寻
及diff
出现还是无法匹配的情况下时,就会用key
来作为唯一标识,来进行diff
,这样就可以提高diff
效率。
带有Key
属性的vnode
的diff
过程可见下图:
注意在第一轮的diff
过后oldCh
上的B节点
被删除了,但是newCh
上的B节点
上elm
属性保持对oldCh
上B节点
的elm
引用。
Vue 双向绑定原理分析
当我们学习angular或者vue的时候,其双向绑定为我们开发带来了诸多便捷,今天我们就来分析一下vue双向绑定的原理。
1.vue双向绑定原理
vue.js 则是采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()
来劫持各个属性的setter
,getter
,在数据变动时发布消息给订阅者,触发相应的监听回调。我们先来看Object.defineProperty()这个方法:
var obj = {};
Object.defineProperty(obj, 'name', {
get: function() {
console.log('我被获取了')
return val;
},
set: function (newVal) {
console.log('我被设置了')
}
})
obj.name = 'fei';//在给obj设置name属性的时候,触发了set这个方法
var val = obj.name;//在得到obj的name属性,会触发get方法
已经了解到vue是通过数据劫持的方式来做数据绑定的,其中最核心的方法便是通过Object.defineProperty()
来实现对属性的劫持,那么在设置或者获取的时候我们就可以在get或者set方法里加入其他的触发函数,达到监听数据变动的目的,无疑这个方法是本文中最重要、最基础的内容之一。
2.实现最简单的双向绑定
我们知道通过Object.defineProperty()可以实现数据劫持,使得属性在赋值的时候触发set方法,
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Document</title>
</head>
<body>
<div id="demo"></div>
<input type="text" id="inp">
<script>
var obj = {};
var demo = document.querySelector('#demo')
var inp = document.querySelector('#inp')
Object.defineProperty(obj, 'name', {
get: function() {
return val;
},
set: function (newVal) {//当该属性被赋值的时候触发
inp.value = newVal;
demo.innerHTML = newVal;
}
})
inp.addEventListener('input', function(e) {
// 给obj的name属性赋值,进而触发该属性的set方法
obj.name = e.target.value;
});
obj.name = 'fei';//在给obj设置name属性的时候,触发了set这个方法
</script>
</body>
</html>
当然要是这么粗暴,肯定不行,性能会出很多的问题。
3.讲解vue如何实现
先看原理图
3.1 observer用来实现对每个vue中的data中定义的属性循环用Object.defineProperty()实现数据劫持,以便利用其中的setter和getter,然后通知订阅者,订阅者会触发它的update方法,对视图进行更新。
3.2 我们介绍为什么要订阅者,在vue中v-model,v-name,{{}}等都可以对数据进行显示,也就是说假如一个属性都通过这三个指令了,那么每当这个属性改变的时候,相应的这个三个指令的html视图也必须改变,于是vue中就是每当有这样的可能用到双向绑定的指令,就在一个Dep中增加一个订阅者,其订阅者只是更新自己的指令对应的数据,也就是v-model='name'和{{name}}有两个对应的订阅者,各自管理自己的地方。每当属性的set方法触发,就循环更新Dep中的订阅者。
4.vue代码实现
4.1 observer实现,主要是给每个vue的属性用Object.defineProperty(),代码如下:
function defineReactive (obj, key, val) {
var dep = new Dep();
Object.defineProperty(obj, key, {
get: function() {
//添加订阅者watcher到主题对象Dep
if(Dep.target) {
// JS的浏览器单线程特性,保证这个全局变量在同一时间内,只会有同一个监听器使用
dep.addSub(Dep.target);
}
return val;
},
set: function (newVal) {
if(newVal === val) return;
val = newVal;
console.log(val);
// 作为发布者发出通知
dep.notify();//通知后dep会循环调用各自的update方法更新视图
}
})
}
function observe(obj, vm) {
Object.keys(obj).forEach(function(key) {
defineReactive(vm, key, obj[key]);
})
}
4.2实现compile:
compile的目的就是解析各种指令成真正的html。
function Compile(node, vm) {
if(node) {
this.$frag = this.nodeToFragment(node, vm);
return this.$frag;
}
}
Compile.prototype = {
nodeToFragment: function(node, vm) {
var self = this;
var frag = document.createDocumentFragment();
var child;
while(child = node.firstChild) {
console.log([child])
self.compileElement(child, vm);
frag.append(child); // 将所有子节点添加到fragment中
}
return frag;
},
compileElement: function(node, vm) {
var reg = /\{\{(.*)\}\}/;
//节点类型为元素(input元素这里)
if(node.nodeType === 1) {
var attr = node.attributes;
// 解析属性
for(var i = 0; i < attr.length; i++ ) {
if(attr[i].nodeName == 'v-model') {//遍历属性节点找到v-model的属性
var name = attr[i].nodeValue; // 获取v-model绑定的属性名
node.addEventListener('input', function(e) {
// 给相应的data属性赋值,进而触发该属性的set方法
vm[name]= e.target.value;
});
new Watcher(vm, node, name, 'value');//创建新的watcher,会触发函数向对应属性的dep数组中添加订阅者,
}
};
}
//节点类型为text
if(node.nodeType === 3) {
if(reg.test(node.nodeValue)) {
var name = RegExp.$1; // 获取匹配到的字符串
name = name.trim();
new Watcher(vm, node, name, 'nodeValue');
}
}
}
}
4.3 watcher实现
function Watcher(vm, node, name, type) {
Dep.target = this;
this.name = name;
this.node = node;
this.vm = vm;
this.type = type;
this.update();
Dep.target = null;
}
Watcher.prototype = {
update: function() {
this.get();
this.node[this.type] = this.value; // 订阅者执行相应操作
},
// 获取data的属性值
get: function() {
console.log(1)
this.value = this.vm[this.name]; //触发相应属性的get
}
}
4.4 实现Dep来为每个属性添加订阅者
function Dep() {
this.subs = [];
}
Dep.prototype = {
addSub: function(sub) {
this.subs.push(sub);
},
notify: function() {
this.subs.forEach(function(sub) {
sub.update();
})
}
}
这样一来整个数据的双向绑定就完成了。
5.梳理
首先我们为每个vue属性用Object.defineProperty()实现数据劫持,为每个属性分配一个订阅者集合的管理数组dep;然后在编译的时候在该属性的数组dep中添加订阅者,v-model会添加一个订阅者,{{}}也会,v-bind也会,只要用到该属性的指令理论上都会,接着为input会添加监听事件,修改值就会为该属性赋值,触发该属性的set方法,在set方法内通知订阅者数组dep,订阅者数组循环调用各订阅者的update方法更新视图。
简易vue源码地址:https://github.com/jiangzhenfei/simple-Vue
Vue 2.0 的数据依赖实现原理简析
首先让我们从最简单的一个实例Vue
入手:
const app = new Vue({
// options 传入一个选项obj.这个obj即对于这个vue实例的初始化
})
通过查阅文档,我们可以知道这个options
可以接受:
- 选项/数据
- data
- props
- propsData(方便测试使用)
- computed
- methods
- watch
- 选项 / DOM
- 选项 / 生命周期钩子
- 选项 / 资源
- 选项 / 杂项
具体未展开的内容请自行查阅相关文档,接下来让我们来看看传入的选项/数据
是如何管理数据之间的相互依赖的。
const app = new Vue({
el: '#app',
props: {
a: {
type: Object,
default () {
return {
key1: 'a',
key2: {
a: 'b'
}
}
}
}
},
data: {
msg1: 'Hello world!',
arr: {
arr1: 1
}
},
watch: {
a (newVal, oldVal) {
console.log(newVal, oldVal)
}
},
methods: {
go () {
console.log('This is simple demo')
}
}
})
我们使用Vue
这个构造函数去实例化了一个vue
实例app
。传入了props
, data
, watch
, methods
等属性。在实例化的过程中,Vue
提供的构造函数就使用我们传入的options
去完成数据的依赖管理,初始化的过程只有一次,但是在你自己的程序当中,数据的依赖管理的次数不止一次。
那Vue
的构造函数到底是怎么实现的呢?Vue
// 构造函数
function Vue (options) {
if (process.env.NODE_ENV !== 'production' &&
!(this instanceof Vue)) {
warn('Vue is a constructor and should be called with the `new` keyword')
}
this._init(options)
}
// 对Vue这个class进行mixin,即在原型上添加方法
// Vue.prototype.* = function () {}
initMixin(Vue)
stateMixin(Vue)
eventsMixin(Vue)
lifecycleMixin(Vue)
renderMixin(Vue)
当我们调用new Vue
的时候,事实上就调用的Vue
原型上的_init
方法.
// 原型上提供_init方法,新建一个vue实例并传入options参数
Vue.prototype._init = function (options?: Object) {
const vm: Component = this
// a uid
vm._uid = uid++
let startTag, endTag
// a flag to avoid this being observed
vm._isVue = true
// merge options
if (options && options._isComponent) {
// optimize internal component instantiation
// since dynamic options merging is pretty slow, and none of the
// internal component options needs special treatment.
initInternalComponent(vm, options)
} else {
// 将传入的这些options选项挂载到vm.$options属性上
vm.$options = mergeOptions(
// components/filter/directive
resolveConstructorOptions(vm.constructor),
// this._init()传入的options
options || {},
vm
)
}
/* istanbul ignore else */
if (process.env.NODE_ENV !== 'production') {
initProxy(vm)
} else {
vm._renderProxy = vm
}
// expose real self
vm._self = vm // 自身的实例
// 接下来所有的操作都是在这个实例上添加方法
initLifecycle(vm) // lifecycle初始化
initEvents(vm) // events初始化 vm._events, 主要是提供vm实例上的$on/$emit/$off/$off等方法
initRender(vm) // 初始化渲染函数,在vm上绑定$createElement方法
callHook(vm, 'beforeCreate') // 钩子函数的执行, beforeCreate
initInjections(vm) // resolve injections before data/props
initState(vm) // Observe data添加对data的监听, 将data转化为getters/setters
initProvide(vm) // resolve provide after data/props
callHook(vm, 'created') // 钩子函数的执行, created
// vm挂载的根元素
if (vm.$options.el) {
vm.$mount(vm.$options.el)
}
}
其中在this._init()
方法中调用initState(vm)
,完成对vm
这个实例的数据的监听,也是本文所要展开说的具体内容。
export function initState (vm: Component) {
// 首先在vm上初始化一个_watchers数组,缓存这个vm上的所有watcher
vm._watchers = []
// 获取options,包括在new Vue传入的,同时还包括了Vue所继承的options
const opts = vm.$options
// 初始化props属性
if (opts.props) initProps(vm, opts.props)
// 初始化methods属性
if (opts.methods) initMethods(vm, opts.methods)
// 初始化data属性
if (opts.data) {
initData(vm)
} else {
observe(vm._data = {}, true /* asRootData */)
}
// 初始化computed属性
if (opts.computed) initComputed(vm, opts.computed)
// 初始化watch属性
if (opts.watch) initWatch(vm, opts.watch)
}
initProps
我们在实例化app
的时候,在构造函数里面传入的options
中有props
属性:
props: {
a: {
type: Object,
default () {
return {
key1: 'a',
key2: {
a: 'b'
}
}
}
}
}
function initProps (vm: Component, propsOptions: Object) {
// propsData主要是为了方便测试使用
const propsData = vm.$options.propsData || {}
// 新建vm._props对象,可以通过app实例去访问
const props = vm._props = {}
// cache prop keys so that future props updates can iterate using Array
// instead of dynamic object key enumeration.
// 缓存的prop key
const keys = vm.$options._propKeys = []
const isRoot = !vm.$parent
// root instance props should be converted
observerState.shouldConvert = isRoot
for (const key in propsOptions) {
// this._init传入的options中的props属性
keys.push(key)
// 注意这个validateProp方法,不仅完成了prop属性类型验证的,同时将prop的值都转化为了getter/setter,并返回一个observer
const value = validateProp(key, propsOptions, propsData, vm)
// 将这个key对应的值转化为getter/setter
defineReactive(props, key, value)
// static props are already proxied on the component's prototype
// during Vue.extend(). We only need to proxy props defined at
// instantiation here.
// 如果在vm这个实例上没有key属性,那么就通过proxy转化为proxyGetter/proxySetter, 并挂载到vm实例上,可以通过app._props[key]这种形式去访问
if (!(key in vm)) {
proxy(vm, `_props`, key)
}
}
observerState.shouldConvert = true
}
接下来看下validateProp(key, propsOptions, propsData, vm)
方法内部到底发生了什么。
export function validateProp (
key: string,
propOptions: Object, // $options.props属性
propsData: Object, // $options.propsData属性
vm?: Component
): any {
const prop = propOptions[key]
// 如果在propsData测试props上没有缓存的key
const absent = !hasOwn(propsData, key)
let value = propsData[key]
// 处理boolean类型的数据
// handle boolean props
if (isType(Boolean, prop.type)) {
if (absent && !hasOwn(prop, 'default')) {
value = false
} else if (!isType(String, prop.type) && (value === '' || value === hyphenate(key))) {
value = true
}
}
// check default value
if (value === undefined) {
// default属性值,是基本类型还是function
// getPropsDefaultValue见下面第一段代码
value = getPropDefaultValue(vm, prop, key)
// since the default value is a fresh copy,
// make sure to observe it.
const prevShouldConvert = observerState.shouldConvert
observerState.shouldConvert = true
// 将value的所有属性转化为getter/setter形式
// 并添加value的依赖
// observe方法的分析见下面第二段代码
observe(value)
observerState.shouldConvert = prevShouldConvert
}
if (process.env.NODE_ENV !== 'production') {
assertProp(prop, key, value, vm, absent)
}
return value
}
// 获取prop的默认值
function getPropDefaultValue (vm: ?Component, prop: PropOptions, key: string): any {
// no default, return undefined
// 如果没有default属性的话,那么就返回undefined
if (!hasOwn(prop, 'default')) {
return undefined
}
const def = prop.default
// the raw prop value was also undefined from previous render,
// return previous default value to avoid unnecessary watcher trigger
if (vm && vm.$options.propsData &&
vm.$options.propsData[key] === undefined &&
vm._props[key] !== undefined) {
return vm._props[key]
}
// call factory function for non-Function types
// a value is Function if its prototype is function even across different execution context
// 如果是function 则调用def.call(vm)
// 否则就返回default属性对应的值
return typeof def === 'function' && getType(prop.type) !== 'Function'
? def.call(vm)
: def
}
Vue
提供了一个observe
方法,在其内部实例化了一个Observer
类,并返回Observer
的实例。每一个Observer
实例对应记录了props
中这个的default value
的所有依赖(仅限object
类型),这个Observer
实际上就是一个观察者,它维护了一个数组this.subs = []
用以收集相关的subs(订阅者)
(即这个观察者的依赖)。通过将default value
转化为getter/setter
形式,同时添加一个自定义__ob__
属性,这个属性就对应Observer
实例。
说起来有点绕,还是让我们看看我们给的demo
里传入的options
配置:
props: {
a: {
type: Object,
default () {
return {
key1: 'a',
key2: {
a: 'b'
}
}
}
}
}
在往上数的第二段代码里面的方法obervse(value)
,即对{key1: 'a', key2: {a: 'b'}}
进行依赖的管理,同时将这个obj
所有的属性值都转化为getter/setter
形式。此外,Vue
还会将props
属性都代理到vm
实例上,通过vm.a
就可以访问到这个属性。
此外,还需要了解下在Vue
中管理依赖的一个非常重要的类: Dep
export default class Dep {
constructor () {
this.id = uid++
this.subs = []
}
addSub () {...} // 添加订阅者(依赖)
removeSub () {...} // 删除订阅者(依赖)
depend () {...} // 检查当前Dep.target是否存在以及判断这个watcher已经被添加到了相应的依赖当中,如果没有则添加订阅者(依赖),如果已经被添加了那么就不做处理
notify () {...} // 通知订阅者(依赖)更新
}
在Vue
的整个生命周期当中,你所定义的响应式的数据上都会绑定一个Dep
实例去管理其依赖。它实际上就是观察者
和订阅者
联系的一个桥梁。
刚才谈到了对于依赖的管理,它的核心之一就是观察者Observer
这个类:
export class Observer {
value: any;
dep: Dep;
vmCount: number; // number of vms that has this object as root $data
constructor (value: any) {
this.value = value
// dep记录了和这个value值的相关依赖
this.dep = new Dep()
this.vmCount = 0
// value其实就是vm._data, 即在vm._data上添加__ob__属性
def(value, '__ob__', this)
// 如果是数组
if (Array.isArray(value)) {
// 首先判断是否能使用__proto__属性
const augment = hasProto
? protoAugment
: copyAugment
augment(value, arrayMethods, arrayKeys)
// 遍历数组,并将obj类型的属性改为getter/setter实现
this.observeArray(value)
} else {
// 遍历obj上的属性,将每个属性改为getter/setter实现
this.walk(value)
}
}
/**
* Walk through each property and convert them into
* getter/setters. This method should only be called when
* value type is Object.
*/
// 将每个property对应的属性都转化为getter/setters,只能是当这个value的类型为Object时
walk (obj: Object) {
const keys = Object.keys(obj)
for (let i = 0; i < keys.length; i++) {
defineReactive(obj, keys[i], obj[keys[i]])
}
}
/**
* Observe a list of Array items.
*/
// 监听array中的item
observeArray (items: Array<any>) {
for (let i = 0, l = items.length; i < l; i++) {
observe(items[i])
}
}
}
walk
方法里面调用defineReactive
方法:通过遍历这个object
的key
,并将对应的value
转化为getter/setter
形式,通过闭包维护一个dep
,在getter
方法当中定义了这个key
是如何进行依赖的收集,在setter
方法中定义了当这个key
对应的值改变后,如何完成相关依赖数据的更新。但是从源码当中,我们却发现当getter
函数被调用的时候并非就一定会完成依赖的收集,其中还有一层判断,就是Dep.target
是否存在。
/**
* Define a reactive property on an Object.
*/
export function defineReactive (
obj: Object,
key: string,
val: any,
customSetter?: Function
) {
// 每个属性新建一个dep实例,管理这个属性的依赖
const dep = new Dep()
// 或者属性描述符
const property = Object.getOwnPropertyDescriptor(obj, key)
// 如果这个属性是不可配的,即无法更改
if (property && property.configurable === false) {
return
}
// cater for pre-defined getter/setters
const getter = property && property.get
const setter = property && property.set
// 递归去将val转化为getter/setter
// childOb将子属性也转化为Observer
let childOb = observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
// 定义getter -->> reactiveGetter
get: function reactiveGetter () {
const value = getter ? getter.call(obj) : val
// 定义相应的依赖
if (Dep.target) {
// Dep.target.addDep(this)
// 即添加watch函数
// dep.depend()及调用了dep.addSub()只不过中间需要判断是否这个id的dep已经被包含在内了
dep.depend()
// childOb也添加依赖
if (childOb) {
childOb.dep.depend()
}
if (Array.isArray(value)) {
dependArray(value)
}
}
return value
},
// 定义setter -->> reactiveSetter
set: function reactiveSetter (newVal) {
const value = getter ? getter.call(obj) : val
/* eslint-disable no-self-compare */
if (newVal === value || (newVal !== newVal && value !== value)) {
return
}
if (setter) {
setter.call(obj, newVal)
} else {
val = newVal
}
// 对得到的新值进行observe
childOb = observe(newVal)
// 相应的依赖进行更新
dep.notify()
}
})
}
在上文中提到了Dep
类是链接观察者
和订阅者
的桥梁。同时在Dep
的实现当中还有一个非常重要的属性就是Dep.target
,它事实就上就是一个订阅者,只有当Dep.target
(订阅者)存在的时候,调用属性的getter
函数的时候才能完成依赖的收集工作。
Dep.target = null
const targetStack = []
export function pushTarget (_target: Watcher) {
if (Dep.target) targetStack.push(Dep.target)
Dep.target = _target
}
export function popTarget () {
Dep.target = targetStack.pop()
}
那么Vue
是如何来实现订阅者
的呢?Vue
里面定义了一个类: Watcher
,在Vue
的整个生命周期当中,会有4类地方会实例化Watcher
:
-
Vue
实例化的过程中有watch
选项 -
Vue
实例化的过程中有computed
计算属性选项 -
Vue
原型上有挂载$watch
方法: Vue.prototype.watch`方法 -
Vue
生成了render
函数,更新视图时
constructor (
vm: Component,
expOrFn: string | Function,
cb: Function,
options?: Object
) {
// 缓存这个实例vm
this.vm = vm
// vm实例中的_watchers中添加这个watcher
vm._watchers.push(this)
// options
if (options) {
this.deep = !!options.deep
this.user = !!options.user
this.lazy = !!options.lazy
this.sync = !!options.sync
} else {
this.deep = this.user = this.lazy = this.sync = false
}
this.cb = cb
this.id = ++uid // uid for batching
this.active = true
this.dirty = this.lazy // for lazy watchers
....
// parse expression for getter
if (typeof expOrFn === 'function') {
this.getter = expOrFn
} else {
this.getter = parsePath(expOrFn)
if (!this.getter) {
this.getter = function () {}
}
}
// 通过get方法去获取最新的值
// 如果lazy为true, 初始化的时候为undefined
this.value = this.lazy
? undefined
: this.get()
}
get () {...}
addDep () {...}
update () {...}
run () {...}
evaluate () {...}
run () {...}
Watcher
接收的参数当中expOrFn
定义了用以获取watcher
的getter
函数。expOrFn
可以有2种类型:string
或function
.若为string
类型,首先会通过parsePath
方法去对string
进行分割(仅支持.
号形式的对象访问)。在除了computed
选项外,其他几种实例化watcher
的方式都是在实例化过程中完成求值及依赖的收集工作:this.value = this.lazy ? undefined : this.get()
.在Watcher
的get
方法中:
!!!前方高能
get () {
// pushTarget即设置当前的需要被执行的watcher
pushTarget(this)
let value
const vm = this.vm
if (this.user) {
try {
// $watch(function () {})
// 调用this.getter的时候,触发了属性的getter函数
// 在getter中进行了依赖的管理
value = this.getter.call(vm, vm)
console.log(value)
} catch (e) {
handleError(e, vm, `getter for watcher "${this.expression}"`)
}
} else {
// 如果是新建模板函数,则会动态计算模板与data中绑定的变量,这个时候就调用了getter函数,那么就完成了dep的收集
// 调用getter函数,则同时会调用函数内部的getter的函数,进行dep收集工作
value = this.getter.call(vm, vm)
}
// "touch" every property so they are all tracked as
// dependencies for deep watching
// 让每个属性都被作为dependencies而tracked, 这样是为了deep watching
if (this.deep) {
traverse(value)
}
popTarget()
this.cleanupDeps()
return value
}
一进入get
方法,首先进行pushTarget(this)
的操作,此时Vue
当中Dep.target = 当前这个watcher
,接下来进行value = this.getter.call(vm, vm)
操作,在这个操作中就完成了依赖的收集工作。还是拿文章一开始的demo
来说,在vue
实例化的时候传入了watch
选项:
props: {
a: {
type: Object,
default () {
return {
key1: 'a',
key2: {
a: 'b'
}
}
}
}
},
watch: {
a (newVal, oldVal) {
console.log(newVal, oldVal)
}
},
在Vue
的initState()
开始执行后,首先会初始化props
的属性为getter/setter
函数,然后在进行initWatch
初始化的时候,这个时候初始化watcher
实例,并调用get()
方法,设置Dep.target = 当前这个watcher实例
,进而到value = this.getter.call(vm, vm)
的操作。在调用this.getter.call(vm, vm)
的方法中,便会访问props
选项中的a
属性即其getter
函数。在a
属性的getter
函数执行过程中,因为Dep.target
已经存在,那么就进入了依赖收集
的过程:
if (Dep.target) {
// Dep.target.addDep(this)
// 即添加watch函数
// dep.depend()及调用了dep.addSub()只不过中间需要判断是否这个id的dep已经被包含在内了
dep.depend()
// childOb也添加依赖
if (childOb) {
childOb.dep.depend()
}
if (Array.isArray(value)) {
dependArray(value)
}
}
dep
是一开始初始化的过程中,这个属性上的dep
属性。调用dep.depend()
函数:
depend () {
if (Dep.target) {
// Dep.target为一个watcher
Dep.target.addDep(this)
}
}
Dep.target
也就刚才的那个watcher
实例,这里也就相当于调用了watcher
实例的addDep
方法: watcher.addDep(this)
,并将dep
观察者传入。在addDep
方法中完成依赖收集:
addDep (dep: Dep) {
const id = dep.id
if (!this.newDepIds.has(id)) {
this.newDepIds.add(id)
this.newDeps.push(dep)
if (!this.depIds.has(id)) {
dep.addSub(this)
}
}
}
这个时候依赖完成了收集,当你去修改a
属性的值时,会调用a
属性的setter
函数,里面会执行dep.notify()
,它会遍历所有的订阅者,然后调用订阅者上的update
函数。
initData
过程和initProps
类似,具体可参见源码。
initComputed
以上就是在initProps
过程中Vue
是如何进行依赖收集的,initData
的过程和initProps
类似,下来再来看看initComputed
的过程.
在computed
属性初始化的过程当中,会为每个属性实例化一个watcher
:
const computedWatcherOptions = { lazy: true }
function initComputed (vm: Component, computed: Object) {
// 新建_computedWatchers属性
const watchers = vm._computedWatchers = Object.create(null)
for (const key in computed) {
const userDef = computed[key]
// 如果computed为funtion,即取这个function为getter函数
// 如果computed为非function.则可以单独为这个属性定义getter/setter属性
let getter = typeof userDef === 'function' ? userDef : userDef.get
// create internal watcher for the computed property.
// lazy属性为true
// 注意这个地方传入的getter参数
// 实例化的过程当中不去完成依赖的收集工作
watchers[key] = new Watcher(vm, getter, noop, computedWatcherOptions)
// component-defined computed properties are already defined on the
// component prototype. We only need to define computed properties defined
// at instantiation here.
if (!(key in vm)) {
defineComputed(vm, key, userDef)
}
}
}
但是这个watcher
在实例化的过程中,由于传入了{lazy: true}
的配置选项,那么一开始是不会进行求值与依赖收集的: this.value = this.lazy ? undefined : this.get()
.在initComputed
的过程中,Vue
会将computed
属性定义到vm
实例上,同时将这个属性定义为getter/setter
。当你访问computed
属性的时候调用getter
函数:
function createComputedGetter (key) {
return function computedGetter () {
const watcher = this._computedWatchers && this._computedWatchers[key]
if (watcher) {
// 是否需要重新计算
if (watcher.dirty) {
watcher.evaluate()
}
// 管理依赖
if (Dep.target) {
watcher.depend()
}
return watcher.value
}
}
}
在watcher
存在的情况下,首先判断watcher.dirty
属性,这个属性主要是用于判断这个computed
属性是否需要重新求值,因为在上一轮的依赖收集的过程当中,观察者已经将这个watcher
添加到依赖数组当中了,如果观察者发生了变化,就会dep.notify()
,通知所有的watcher
,而对于computed
的watcher
接收到变化的请求后,会将watcher.dirty = true
即表明观察者发生了变化,当再次调用computed
属性的getter
函数的时候便会重新计算,否则还是使用之前缓存的值。
initWatch
initWatch
的过程中其实就是实例化new Watcher
完成观察者的依赖收集的过程,在内部的实现当中是调用了原型上的Vue.prototype.$watch
方法。这个方法也适用于vm
实例,即在vm
实例内部调用this.$watch
方法去实例化watcher
,完成依赖的收集,同时监听expOrFn
的变化。
总结:
以上就是在Vue
实例初始化的过程中实现依赖管理的分析。大致的总结下就是:
-
initState
的过程中,将props
,computed
,data
等属性通过Object.defineProperty
来改造其getter/setter
属性,并为每一个响应式属性实例化一个observer
观察者。这个observer
内部dep
记录了这个响应式属性的所有依赖。 - 当响应式属性调用
setter
函数时,通过dep.notify()
方法去遍历所有的依赖,调用watcher.update()
去完成数据的动态响应。
这篇文章主要从初始化的数据层面上分析了Vue
是如何管理依赖来到达数据的动态响应。下一篇文章来分析下Vue
中模板中的指令和响应式数据是如何关联来实现由数据驱动视图,以及数据是如何响应视图变化的。
深入阅读Vue.js源码
https://ustbhuangyi.github.io/vue-analysis/
Nuxt
路由与视图
创建与运行基于 Nuxt.js 框架的 Vue.js 项目
npx create-nuxt-app gp-next
自动生成路由
(1) 修改 index.vue路由, 浏览器直接访问
<template>
<div class="container">
<h1 class="display-1">
List
</h1>
</div>
</template>
(2)在pages里创建movies文件夹,在movies里创建hello.vue,浏览器里直接访问:http://localhost:3000/hello
<template>
<div class="container">
<h1 class="display-1">
hello
</h1>
</div>
</template>
路由连接 nuxt-link
修改index.vue:
<template>
<div class="container">
<h1 class="display-1">
<a href="/movies/hello">gp</a>
</h1>
</div>
</template>
浏览首页,点击连接,发现页面刷新了。使用nuxt-link可以防止页面刷新:
<template>
<div class="container">
<h1 class="display-1">
<nuxt-link to="/movies/hello">gp</nuxt-link>
</h1>
</div>
</template>
动态路由
动态路由通过 _ 开头的文件名来实现。在movies里新建_id.vue文件:
<template>
<div class="container">
<h1 class="display-1">
{{ $route.params.id }}
</h1>
</div>
</template>
验证路由里的参数:validate
通过validate函数验证参数,函数返回结果为布尔值:
<template>
<div class="container">
<h1 class="display-1">
{{ $route.params.id }}
</h1>
</div>
</template>
<script>
export default {
validate({ params }) {
return /^\d+$/.test(params.id)
}
}
</script>
视图:应用模板
在项目根目录下创建 app.html:
<!DOCTYPE html>
<html {{ HTML_ATTRS }}>
<head>
{{ HEAD }}
</head>
<body>
{{ APP }}
</body>
</html>
视图:默认布局
(1) 去掉index.vue里div的container, 在 layouts/default.vue 里的div上添加 class='container'
(2) 丰富default.vue文件:
视图:自定义布局
(1) 在layouts目录下创建 fullscreen.vue 文件
<template>
<div>
<nuxt />
</div>
</template>
(2) 在movies/hello.vue添加:
<script>
export default {
layout: 'fullscreen'
}
</script>
异步数据
搭建假的RESTful接口(json-server)
(1) 准备json文件:http://m.maoyan.com/ajax/movieOnInfoList?token=, 改造一下,只保留movieList字段
(2) 启动:json-server -w assets/movies.json -p 3333
载入页面初始数据(asyncData)
(1) 修改pages下的index.vue
<template>
<div>
<h1 class="display-1">
正在热映
</h1>
<div
v-for="movie in movies"
:key="movie.id"
>
{{ movie.nm }}
</div>
</div>
</template>
<script>
export default {
async asyncData({ $axios }) {
const movies = await $axios.$get('http://localhost:3333/movieList')
return { movies }
}
}
</script>
动态路由上的初始数据
(1) 修改movies里的_id.vue
<template>
<div class="container">
<h1 class="display-3">
{{ movie.nm }}
</h1>
<div>
{{ movie.star }}
</div>
<div>
{{ movie.showInfo }}
</div>
</div>
</template>
<script>
export default {
validate({ params }) {
return /^\d+$/.test(params.id)
},
async asyncData({ $axios, params }) {
const movie = await $axios.$get(`http://localhost:3333/movieList/${params.id}`)
return {
movie
}
}
}
</script>
错误处理:显示错误页面
async asyncData({ $axios, params, error }) {
try {
const movie = await $axios.$get(`http://localhost:3333/movieList/${params.id}`)
return {
movie
}
} catch (e) {
error({ statusCode: 404, message: 'Movie not fount.'})
}
}
重新设计内容页面
(1) 修改movies 下的index.vue
<template>
<div>
<h1 class="display-1 my-5">正在热映</h1>
<div class="row justify-content-center">
<div
v-for="movie in movies"
:key="movie.id"
class="col-md-6"
>
<div class="card my-3">
<nuxt-link :to="{ name: 'movies-id', params: { id: movie.id } }">
<img
:src="movie.img"
:alt="movie.nm"
class="card-img-top"
>
<div class="card-body">
<h5 class="card-title">{{ movie.nm }}</h5>
<h6 class="card-subtitle mb-2 text-black-50">{{ movie.star }}</h6>
</div>
</nuxt-link>
</div>
</div>
</div>
</div>
</template>
<script>
export default {
async asyncData({ $axios }) {
const movies = await $axios.$get('http://localhost:3333/movieList')
return { movies }
}
}
</script>
(2) 修改movies 下的_id.vue
<template>
<div class="my-5">
<h1 class="display-3 my-5">
{{ movie.nm }}
</h1>
<img
:src="movie.img"
:alt="movie.nm"
class="rounded w-100 mb-3"
>
<div>
{{ movie.star }}
</div>
</div>
</template>
<script>
export default {
validate({ params }) {
return /^\d+$/.test(params.id)
},
async asyncData({ $axios, params, error }) {
try {
const movie = await $axios.$get(`http://localhost:3333/movieList/${params.id}`)
return {
movie
}
} catch (e) {
error({ statusCode: 404, message: 'Movie not fount.'})
}
}
}
</script>
在导航栏添加菜单项目
<template>
<div>
<nav class="navbar navbar-light bg-light">
<div class="container">
<nuxt-link
:to="{ name: 'index' }"
class="navbar-brand">GP-Nuxt</nuxt-link>
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<nuxt-link
:to="{ name: 'movies' }"
class="nav-link">Movies</nuxt-link>
</li>
</ul>
</div>
</nav>
<div class="container">
<nuxt/>
</div>
</div>
</template>
<style>
.navbar-brand {
letter-spacing: 2px;
font-weight: bold;
}
.navbar-light .navbar-nav .nuxt-link-active,
.navbar-light .navbar-nav .nuxt-link-active:focus {
color: #000;
}
</style>
页面标题
(1) 修改根目录index.vue
<script>
export default {
async asyncData({ $axios }) {
const movies = await $axios.$get('http://localhost:3333/movieList')
return { movies }
},
head() {
return {
title: 'GP-Nuxt'
}
}
}
</script>
(2) 修改movies目录index.vue
<template>
<div>
<h1 class="display-1">
GP-Nuxt
</h1>
</div>
</template>
<script>
export default {
head() {
return {
title: 'Movies'
}
}
}
</script>
(2) 修改详情页_id.vue
<script>
export default {
validate({ params }) {
return /^\d+$/.test(params.id)
},
async asyncData({ $axios, params, error }) {
try {
const movie = await $axios.$get(`http://localhost:3333/movieList/${params.id}`)
return {
movie
}
} catch (e) {
error({ statusCode: 404, message: 'Movie not fount.'})
}
},
head() {
return {
title: this.movie.nm
}
}
}
</script>
数据管理
Vuex: 添加store
(1) 在store目录下创建demo.js:
export const state = () => {
return {
pageName: 'Nuxt Vuex'
}
}
在浏览器Vuex开发工具中查看
Vuex: 使用state
(1) 修改store目录下的demo.js
export const state = () => {
return {
pageName: 'Nuxt Vuex',
count: 0
}
}
(2) 修改pages/demo/vuex.vue
<template>
<div class="container">
<h1 class="display-1 my-5">{{ pageName }}</h1>
<span class="badge badge-pill badge-primary">Count {{ count }}</span>
</div>
</template>
<script>
export default {
computed: {
pageName() {
return this.$store.state.demo.pageName
},
count() {
return this.$store.state.demo.count
}
}
}
</script>
Vuex: 提交mutations
(1) 修改store目录下的demo.js
export const state = () => ({
pageName: 'Vuex',
count: 0
})
export const mutations = {
add(state, number) {
state.count = state.count + number
}
}
(2) 修改pages/demo/vuex.vue
<template>
<div class="container">
<h1 class="display-1 my-5">{{ pageName }}</h1>
<span
class="badge badge-pill badge-primary"
@click="add">Count {{ count }}</span>
</div>
</template>
<script>
export default {
computed: {
pageName() {
return this.$store.state.demo.pageName
},
count() {
return this.$store.state.demo.count
}
},
methods: {
add() {
this.$store.commit('demo/add', 2)
}
}
}
</script>
Vuex: 指派actions
(1) 修改store目录下的demo.js
export const state = () => ({
pageName: 'Vuex',
count: 0
})
export const mutations = {
add(state, number) {
state.count = state.count + number
}
}
export const actions = {
addAction(context, number) {
setTimeout(() => {
context.commit('add', number)
}, 1000)
}
}
(2) 修改pages/demo/vuex.vue
<template>
<div class="container">
<h1 class="display-1 my-5">{{ pageName }}</h1>
<span
class="badge badge-pill badge-primary"
@click="addAction">Count {{ count }}</span>
</div>
</template>
<script>
export default {
computed: {
pageName() {
return this.$store.state.demo.pageName
},
count() {
return this.$store.state.demo.count
}
},
methods: {
add() {
this.$store.commit('demo/add', 2)
},
addAction() {
this.$store.dispatch('demo/addAction', 3)
}
}
}
</script>
用fetch方法载入store数据
(1) 在store目录下创建 movies.js
export const state = () => ({
list: []
})
export const mutations = {
setList(state, list) {
state.list = list
}
}
(2) 修改 movies 下的 index.vue:
<script>
export default {
// async asyncData({ $axios }) {
// const movies = await $axios.$get('http://localhost:3333/movieList')
// return { movies }
// },
async fetch({ $axios, store }) {
const response = await $axios.get('http://localhost:3333/movieList')
store.commit('movies/setList', response.data)
},
computed: {
movies() {
return this.$store.state.movies.list
}
},
head() {
return {
title: 'Movies'
}
}
}
</script>
删除内容项目的动作
(1) 在 store/movies.js 里添加
export const state = () => ({
list: []
})
export const mutations = {
setList(state, list) {
state.list = list
}
}
export const actions = {
async destroyAction(context, id) {
await this.$axios.delete(`http://localhost:3333/movieList/${id}`)
}
}
(2)修改pages/movies.vue
<template>
<div>
<h1 class="display-1 my-5">正在热映</h1>
<div class="row justify-content-center">
<div
v-for="movie in movies"
:key="movie.id"
class="col-md-6"
>
<div class="card my-3">
<nuxt-link :to="{ name: 'movies-id', params: { id: movie.id } }">
<img
:src="movie.img"
:alt="movie.nm"
class="card-img-top"
>
<div class="card-body">
<h5 class="card-title">{{ movie.nm }}</h5>
<h6 class="card-subtitle mb-2 text-black-50">{{ movie.star }}</h6>
</div>
</nuxt-link>
<div class="card-footer">
<button
class="btn btn-link"
@click="destroyAction(movie.id)">Delete</button>
</div>
</div>
</div>
</div>
</div>
</template>
<script>
export default {
// async asyncData({ $axios }) {
// const movies = await $axios.$get('http://localhost:3333/movieList')
// return { movies }
// },
async fetch({ $axios, store }) {
const response = await $axios.get('http://localhost:3333/movieList')
store.commit('movies/setList', response.data)
},
computed: {
movies() {
return this.$store.state.movies.list
}
},
methods: {
destroyAction(id) {
this.$store.dispatch('movies/destroyAction', id)
}
},
head() {
return {
title: 'Movies'
}
}
}
</script>
移除内容项目的修改
修改 store/movies.js:
export const state = () => ({
list: []
})
export const mutations = {
setList(state, list) {
state.list = list
},
removeItem(state, id) {
state.list = state.list.filter(item => {
return item.id != id
})
}
}
export const actions = {
async destroyAction(context, id) {
await this.$axios.delete(`http://localhost:3333/movieList/${id}`)
context.commit('removeItem', id)
}
}