def contours_function(image):
'''
1、高斯模糊
2、灰度图像
3、全局二值化
4、FindCoutours:找出轮廓
'''
dst = cv.GaussianBlur(image,(3,3),0)
gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY| cv.THRESH_OTSU)
cv.imshow("Binary", binary)
'''
cv.findContours:
mode = cv.RETR_EXTERNAL:表示找出最外层的轮廓
cv.RETR_TREE:表示找出所有轮廓
'''
cloneImage, contours, hierachy = cv.findContours(
binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0, 255), 2)
print(i)
cv.imshow("Detect_contours", image)
轮廓填充
# thickness = -1
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0, 255), -1)
基于Canny边缘提取
def canny_edge_function(image):
'''
Canny边缘提取算法:
1、进行高斯模糊:因为Canny对噪声比较敏感,所以先高斯模糊降噪
2、灰度转移:转化为单通道
3、计算梯度:Sobel/Scharr
4、
5、高低阈值输出二值图像
'''
blurred = cv.GaussianBlur(image, (3, 3), 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
#低阈值:50;高阈值:150
edge_output = cv.Canny(grad_x,grad_y,50,150)
cv.imshow("Binary",edge_output)
return edge_output
def contours_function(image):
binary = canny_edge_function(image)
cloneImage, contours, hierachy = cv.findContours(
binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0, 255), -1)
print(i)
cv.imshow("Detect_contours", image)