每天一算法:遗传算法

声明:原创文章,转载请注明出处。https://www.jianshu.com/p/ebe0c98ddf0b

一、概述

遗传算法(Genetic Algorithm)遵循自然界“适者生存、优胜劣汰”的原则,是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

二、算法流程

1、基因编码

对一些个体的基因做一个编码操作,描述出这些基因的结构。

根据常识,在生物的每个细胞中,都存在相同的一套染色体(chromosome),即DNA组合的聚合体。


染色体

因此,我们可以将这些染色体由数字0和1组成的字符串来表达。


染色体

2、初始化种群

需要造出一个种群,这个种群有多个生物个体,但是其基因却都不相同。

3、种群选择(适应度计算)

需要制造出一些苛刻的条件来淘汰一些不能适应这些条件的个体,不让其产生后代。
这是因为,这些淘汰掉的个体和最终筛选出的个体差异很大,如果保留,他的后代只会让计算量增大而距离目标没有显著增近。

4、产生下一代

这个过程通常有三种方式:直接选择、基因重组(种群交叉)、基因突变(种群变异)。

之后的过程,则会一直重复步骤3-4,直到找到最优解。

三、背包问题

我们通过求解背包问题的最优解来描述遗传算法的步骤。
假设有这样一个背包,可以放置30公斤的东西。现在我们有以下物品,其<重量,价值>有如下关系:

item weight value
1 15 15
2 3 7
3 2 10
4 5 5
5 9 8
6 20 17

怎么能在不超过最大30公斤的限制,选取的物品价值最大呢?

1、基因编码

这6种物品,我们可以采用bit位进行编码。

item1 item2 item3 item4 item5 item6 chromosome
1 1 1 1 1 1 111111

共使用6位分别表示是否选取了此Item。1表示选取,0则表示未选取。
假设只有物品1,3,5,则染色体表示为101010。

2、初始化种群

我们随机产生4个生物个体,其染色体如下:
100110:对应物品1,4,5
001110:对应物品3,4,5
010100:对应物品2,4
011001:对应物品2,3,6

3、种群选择

从最初的这4个个体上,我们可以得到如下表格:

染色体 对应物品 总质量 总价值
100110 1,4,5 29 28
001110 3,4,5 16 23
010100 2,4 8 12
011001 2,3,6 25 34

这里我们将总价值这个指标作为染色体的适应度分数,在不超过限制条件的条件下,
其值越大,他的适应性也就越强。

除去苛刻条件的筛选过程(上例是重量超标这个条件),我们还需要一次遴选的过程。即共分为筛选评估和遴选两个过程

我们从总体中选择适合的染色体,让其基因重组,产生下一代。但是这样将会导致染色体在数代之后差异减小,失去了基因的多样性。

一般的,我们会通过轮盘赌这种方式进行选择。
轮盘赌(Roulette Wheel):一种赌博游戏,如下图,可进行旋转。轮盘上刻着很多小格子,轮盘开始旋转后,放入一个小球,待轮盘静止后,小球掉入的所对应的号码即为获胜号码。

轮盘赌

想象一下,在一个分割了97(总适应分数)部分的轮盘,各个染色体的占有率如下:

染色体 适应分数 占有率
100110 29 28.9%
001110 16 23.7%
010100 8 12.4%
011001 25 35.1%
遴选

我们转动4次,中奖的染色体允许繁殖一次,通过计算染色体1和染色4进入下一轮,各繁殖2次。
将这种方法称为:随机普遍选择法(Stochastic Universal Selection method)。

4、产生下一代

4.1 基因重组

我们将上一步中的染色体1和染色体4进行交叉重组,这里我们选择单点交叉方式。
我们随机选择一个位置,将2个染色体分离并进行重组。


多项式相加-数组模型 (2).png
个体 染色体 配对 交叉点位置 重组结果
1 100 110 1-2 3 100 001
2 011 001 1-2 3 011 110
3 1001 10 3-4 4 1001 01
4 0110 01 3-4 4 0110 10

其基因重组过程为下表:

个体 染色体 配对 交叉点位置 重组结果
1 100 110 1-2 3 100 001
2 011 001 1-2 3 011 110
3 1001 10 3-4 4 1001 01
4 0110 01 3-4 4 0110 10

4.2 基因变异

在后代的生长过程中,它们体内的基因会发生一些变化,使得它们与父母不同。这个过程我们称为“变异”,它可以被定义为染色体上发生的随机变化,正是因为变异,种群中才会存在多样性。


基因变异

变异完成后,即得到了新为个体,进化也就完成了,整个过程如下图:


进化

在生产完下一代之后,我们仍然需要对这些后代进行适应度计算。如果发现出现了连续几代适应度几乎不增加甚至反而减少的情况,
说明函数已经收敛。
因此,一般的,有以下几个终止条件:

  • 在进行N次迭代之后,总体适应度没有太大变化。
  • 算法事先定义好了进化的次数。
  • 适应度函数已经达到了预先设定的值。

四、算法可调参数

1、初始群体
上面的背包问题,我们设定了初始群体个数为4个。当然,针对这6个物品,最多有2^6个个体。一般情况下,我们可以设定初始群体数量为N个,N为当前计算机最大可并行计算数量。
2、适应度函数
上面例子中,我们使用轮盘赌算法。当然也可以选择其他方法。
3、基因重组
上面例子中,我们设定的交叉点为3和4,当然可以选择其他的交叉点。
4、终止条件
上面曾列举了常见的3中终止条件,当然还有其他,目的都是当适应函数收敛后终止。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容