Android(IPC)进程间通讯1:详解Binder由来?

Android开发的进程间通讯,整个Android的应用都依赖于binder做底层通信机制。而Linux中提供的进程间通讯方式并没有binder机制,那么android中为什么要单独创造这种通讯方式呢?带着这个问题,继续往下读。

Linux中进程相关概念


Linux将系统内存划分成了 用户空间内核空间 两部分:

用户空间 : 普通应用程序则运行在用户空间上,它们不能使用某些特定的系统功能,不能直接访问硬件,不能直接访问内核空间。
内核空间 : 系统的核心软件会运行在较高的特权级别上,它们驻留在被保护的内存空间上,拥有访问硬件设备的所有权限。

用户程序只能运行在用户空间,用户空间访问内核空间的唯一方式就是系统调用。

linux的用户程序和进程

在linux中,所有的用户程序执行时状态都是进程。进程间存在父子关系来表示同一个用户程序开启的多个同步任务。

所有的进程构成一个以 init 为根的树状结构,这是因为 Linux 内核 并不提供直接建立新进程的系统调用。剩下的所有进程都是 init 进程通过 fork 机制建立的。新的进程要通过老的进程复制自身得到,这就是 fork。fork 是一个系统调用。

每个进程都在内存中分配有属于自己的一片空间 (内存空间,包含栈、堆、全局静态区、文本常量区、程序代码区)。进程之间相互隔离资源:

  • 进程隔离是为保护进程之间互不干扰的执行。
  • 进程隔离技术使用了虚拟地址空间,即进程A的虚拟地址和进程B的虚拟地址不同,这样就防止进程A将数据信息写入进程B。

因为进程隔离的原因,进程A和进程B之间不能直接进行通讯。

但是开发中,总难免要遇到进程通讯的地方(例如一个应用不通进程之间相互传递数据等场景)。

进程间通信方式(IPC)

虽然不同进程在用户空间不能直接进行通讯,但它们却是共享一份内核空间。很显然,当一个用户进程想与另外一个用户进程进行通信时,就可以通过内核空间来完成了

Linux中常见的进程间通讯的几种方式:

  • 1.管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;

  • 2.信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);

  • 3.报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。

  • 4.共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。

  • 5.信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。

  • 6.套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

上面的6种都是内核里的程序:

进程A发起请求给内核里的程序,内核里的程序再将请求转发给进程B,从而达到进程间通信。

Android中的Binder诞生

Android系统通过Linux的动态可加载内核模块,添加一个内核模块运行在内核空间,用户进程之间的通过这个模块作为桥梁,就可以完成通信。就是我们后面要涉及到的:Binder驱动。

google通过新增内核模块完成了进程间通信协议的实现,然后使用binder驱动来调用这个新增的内核模块,来为上层应用提供接口,最后在framework层封装这个接口来提供 java API 调用接口。

Android系统为什么需要再实现一个进程间通信协议Binder呢?

  • 在移动设备上,Binder的传输效率和可操作性很好。
  • Binder机制能够很好地实现Client-Server架构。
  • Binder机制的安全性高。
    • 传统方式对于通信双方的身份并没有做出严格的验证,只有在上层协议上进行架设;
    • 比如Socket通信ip地址是客户端手动填入的,都可以进行伪造;
    • 而Binder机制从协议本身就支持对通信双方做身份校检,因而大大提升了安全性。

感谢您的阅读,本系列会继续创作关于android中进程通讯的具体用法。欢迎前来观望。

推荐阅读

image

Android开发艺术探索

image

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容