学习从零开始构造邻近分类器KNN

起步

本章介绍如何自行构造 KNN 分类器,这个分类器的实现上算是比较简单的了。不过这可能需要你之前阅读过这方面的知识。

前置阅读

分类算法之邻近算法:KNN(理论篇)

分类算法之邻近算法:KNN(应用篇)

欧拉公式衡量距离

关于距离的测量方式有多种,这边采用欧拉距离的测量方式:

1.jpg

对应的 python 代码:

import math
def euler_distance(point1: list, point2: list) -> float:
    """
    计算两点之间的欧拉距离,支持多维
    """
    distance = 0.0
    for a, b in zip(point1, point2):
        distance += math.pow(a - b, 2)
    return math.sqrt(distance)

KNN 分类器

import collections
import numpy as np
class KNeighborsClass(object):
    def __init__(self, n_neighbors=5):
        self.n_neighbors = n_neighbors

    def fit(self, data_set, labels):
        self.data_set = data_set
        self.labels = labels

    def predict(self, test_row):
        dist = []
        for v in self.data_set:
            dist.append(euler_distance(v, test_row))
        dist = np.array(dist)
        sorted_dist_index = np.argsort(dist) # 根据元素的值从大到小对元素进行排序,返回下标

        # 根据K值选出分类结果, ['A', 'B', 'B', 'A', ...]
        class_list = [ self.labels[ sorted_dist_index[i] ] for i in range(self.n_neighbors)]
        result_dict = collections.Counter(class_list)   # 计算各个分类出现的次数
        ret = sorted(result_dict.items(), key=lambda x: x[1], reverse=True) # 采用多数表决,即排序后的第一个分类
        return ret[0][0]

这个分类器不需要训练,因此在 fit 函数中仅仅保存其数据集和结果集即可。在预测函数中,需要依次计算测试样本与数据集中每个样本的距离。筛选出前 K 个,采用多数表决的方式。

测试

还是使用 sklearn 中提供的虹膜数据。

if __name__ == "__main__":
    from sklearn import datasets
    iris = datasets.load_iris()
    knn = KNeighborsClass(n_neighbors=5)
    knn.fit(iris.data, iris.target)
    predict = knn.predict([0.1, 0.2, 0.3, 0.4])
    print(predict)  # output: 1  
Python学习交流群:834179111,群里有很多的学习资料。欢迎欢迎各位前来交流学习。

欢迎小伙伴入群,加我好友,发你学习资料

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • 注:题中所指的『机器学习』不包括『深度学习』。本篇文章以理论推导为主,不涉及代码实现。 前些日子定下了未来三年左右...
    我偏笑_NSNirvana阅读 39,948评论 12 145
  • KNN:K-Nearest Neighbor algorithm 本文转载自:http://blog.csdn.n...
    五秋木阅读 3,741评论 0 1
  • 房间之中,一丝橘黄色的昏暗光线从顶部照射下来,柔和的光线投影到地面形成了一个圆,圆中央,一张盖着粉红色床单的圆床不...
    一只花鼠阅读 767评论 0 1
  • 读到一句非常发人深省的话,很多人用尽毕生努力不想被某一体系所束缚,却发现陷入了另一种体系里。 一辈子想逃脱某种控制...
    逆向行驶Z小姐阅读 353评论 0 0