C语言实现常用数据结构(二)

二叉排序树实现

1、二叉排序树,也叫二叉搜索树,中序遍历为有序序列。这是一种特殊的二叉树,每个节点的左孩子都比其要小,右孩子都比其要大,二叉树的所有子树也都是二叉搜索树。

2、二叉排序树主要功能实现:构造二叉树、插入节点、删除节点。

2.1、插入节点:二叉排序树是一个有序序列,插入节点时只需要从根节点开始查询,如果要插入的节点数据比该节点小,则进入其左孩子位置,如比其大,则进入其右孩子位置,一直找到空闲位置为止。

2.2、删除节点:这里有三种情况,一种是删除叶子节点,一种是删除根节点,一种是删除中间节点。
删除叶子节点时只需要将叶子节点置NULL即可;删除根节点需要将其左孩子设为新的根节点,如果左孩子不存在则将右孩子设为新的根节点;删除中间节点需要将其父节点和其子节点先连接起来,具体实现可查看下文。

C语言实现常用数据结构(一)

树节点定义
b_tree_node.h

#pragma once
#ifndef BinaryTreeNode

#include <stdlib.h>
typedef struct BinaryTreeNode
{
    void* data;
    struct BinaryTreeNode* left_node;
    struct BinaryTreeNode* right_node;
    struct BinaryTreeNode* parent_node;
}b_tree_node;

b_tree_node* create_tree_node(void* data);

b_tree_node* append_left_node_data(b_tree_node* node, void* data);
b_tree_node* append_left_node(b_tree_node* node, b_tree_node* new_node);

b_tree_node* append_right_node_data(b_tree_node* node, void* data);
b_tree_node* append_right_node(b_tree_node* node, b_tree_node* new_node);

#endif

b_tree_node.c

#include "b_tree_node.h"

b_tree_node * create_tree_node(void * data)
{
    b_tree_node *new_node = malloc(sizeof(b_tree_node));
    new_node->data = data;
    new_node->left_node = NULL;
    new_node->right_node = NULL;
    new_node->parent_node = NULL;

    return new_node;
};

b_tree_node* append_left_node_data(b_tree_node* node, void* data)
{
    b_tree_node *newNode = create_tree_node(data, node);
    node->left_node = newNode;
    newNode->parent_node = node;

    return newNode;
};

b_tree_node * append_left_node(b_tree_node * node, b_tree_node * new_node)
{
    node->left_node = new_node;
    new_node->parent_node = node;

    return new_node;
};

b_tree_node* append_right_node_data(b_tree_node* node, void* data)
{
    b_tree_node *newNode = create_tree_node(data);
    node->right_node = newNode;
    newNode->parent_node = node;

    return newNode;
};

b_tree_node* append_right_node(b_tree_node* node, b_tree_node* new_node)
{
    node->right_node = new_node;
    new_node->parent_node = node;

    return new_node;
}

二叉树定义
binary_tree.h

#pragma once
#ifndef BinaryTree

#include <stdlib.h>
#include "m_queue.h"
#include "m_stack.h"
#include "b_tree_node.h"
#include <cstdbool>

typedef struct BinaryTree
{
    b_tree_node* root;
}b_tree, b_tree_bst;

b_tree* create_b_tree();
b_tree* create_b_tree_root(void* data);
b_tree* create_b_tree_level(void* list[], int len); //层序创建二叉树

b_tree_bst* create_bst_tree(void* list[], int len); //创建二叉排序树,中序遍历为顺序排列
void insert_node_by_bst(b_tree_bst *bst_tree, b_tree_node *node);   //排序树插入节点
void insert_node_data_by_bst(b_tree_bst *bst_tree, void *data); //排序树插入节点数据
b_tree_node* find_node_by_bst(b_tree_bst *bst_tree, void *data);        //从排序树从找到第一个等于data的节点
void destroy_node_data_by_bst(b_tree_bst *bst_tree, void* data);        //排序树删除节点

void dispose_b_tree(b_tree ** tree);  //释放

void PreOrder(b_tree_node * root_node);
void PreOrder2(b_tree* tree);
void Inorder(b_tree_node * root_node);
void Inorder2(b_tree* tree);
void LastOrder(b_tree_node * root_node);
void LevelOrder(b_tree* tree);
#endif

binary_tree.c

#include "binary_tree.h"

b_tree * create_b_tree()
{
    b_tree *tree = malloc(sizeof(b_tree));
    tree->root = NULL;
    return tree;
};

b_tree* create_b_tree_root(void* data)
{
    b_tree* tree = create_b_tree();
    b_tree_node  *node = create_tree_node(data);
    tree->root = node;
    return tree;
};

b_tree * create_b_tree_level(void* list[], int len)
{
    if (len == 0)
    {
        perror("create binary tree by level,len==0");
        return NULL;
    }

    b_tree *tree = create_b_tree_root(list[0]);
    m_queue *queue = init_queue();
    en_queue_data(queue, tree->root);
    int index = 1;  //当前未插入数据索引

    while (queue->len > 0)
    {
        b_tree_node *tree_node = de_queue_data(queue);

        if (index < len)
        {
            append_left_node_data(tree_node, list[index]);
            index++;
            en_queue_data(queue, tree_node->left_node);
        }
        if (index < len)
        {
            append_right_node_data(tree_node, list[index]);
            index++;
            en_queue_data(queue, tree_node->right_node);
        }
    }

    dispose_que(&queue);
    return tree;
};

b_tree_bst * create_bst_tree(void* list[], int len)
{
    b_tree_bst* tree_bst = create_b_tree_root(list[0]);
    for (int i = 1; i < len; i++)
    {
        insert_node_data_by_bst(tree_bst, list[i]);
    }

    return tree_bst;
};

void insert_node_by_bst(b_tree_bst * bst_tree, b_tree_node * node)
{
    if (bst_tree->root == NULL)
    {
        bst_tree->root = node;
        return;
    }

    b_tree_node *temp = bst_tree->root;
    while (temp != NULL)
    {
        if (node->data <= temp->data)   //插入节点比对比节点数据小,进入左节点比较
        {
            if (temp->left_node == NULL)    //找到空余位置
            {
                append_left_node(temp, node);
                return;
            }
            else
            {
                temp = temp->left_node;
            }

        }
        else
        {
            if (temp->right_node==NULL)
            {
                append_right_node(temp, node);
                return;
            }
            else
            {
                temp = temp->right_node;
            }

        }
    }
};

void insert_node_data_by_bst(b_tree_bst * bst_tree, void * data)
{
    b_tree_node *tree_node = create_tree_node(data);
    insert_node_by_bst(bst_tree, tree_node);
};

b_tree_node* find_node_by_bst(b_tree_bst *bst_tree, void *data)
{
    if (bst_tree->root == NULL)
    {
        perror("bst tree find node,root is null\n");
        return NULL;
    }

    b_tree_node *temp = bst_tree->root;
    while (temp != NULL)
    {
        if (data == temp->data)
        {
            return temp;
        }
        if (data <= temp->data)
        {
            temp = temp->left_node;
        }
        else
        {
            temp = temp->right_node;
        }
    }

    return NULL;
}

void destroy_node_data_by_bst(b_tree_bst *bst_tree, void* data)
{
    b_tree_node *tree_node = find_node_by_bst(bst_tree, data);
    if (tree_node == NULL)
    {
        return;
    }

    b_tree_node *left_node = tree_node->left_node;
    b_tree_node *right_node = tree_node->right_node;
    b_tree_node *parent_node = tree_node->parent_node;

    if (tree_node == bst_tree->root)    //删除根节点
    {
        if (left_node != NULL)
        {
            bst_tree->root = left_node;     //左节点成为新的根节点
            bst_tree->root->parent_node = NULL;

            if (right_node != NULL) //右节点不为null,重新寻找位置
            {
                insert_node_by_bst(bst_tree, right_node);
            }
        }
        else
        {
            bst_tree->root = right_node;
            bst_tree->root->parent_node = NULL;
        }
        free(tree_node);
        return;
    }

    bool tree_node_parent_left = tree_node->parent_node->left_node == tree_node;    //待删除节点处于父节点左子树?
    if (left_node == NULL && right_node == NULL)    //删除叶子节点
    {
        if (tree_node_parent_left)
        {
            tree_node->parent_node->left_node = NULL;
        }
        else
        {
            tree_node->parent_node->right_node = NULL;
        }
    }
    else
    {
        b_tree_node *new_node = left_node ? left_node : right_node;
        new_node->parent_node = parent_node;

        if (tree_node_parent_left)
        {
            parent_node->left_node = new_node;
        }
        else
        {
            parent_node->right_node = new_node;
        }

        if (left_node != NULL && right_node != NULL)    //删除的节点右子节点不为null,需要附加到之前的左节点右边
        {
            insert_node_by_bst(bst_tree, right_node);
        }
    }

    free(tree_node);
};

void dispose_b_tree(b_tree ** tree)
{
    if ((*tree)->root==NULL)
    {
        return;
    }

    m_stack *stack = init_stack();
    m_queue *queue = init_queue();
    en_queue_data(queue, (*tree)->root);

    while (queue->len>0)
    {
        b_tree_node *tree_node = de_queue_data(queue);
        if (tree_node->left_node != NULL)
        {
            en_queue_data(queue, tree_node->left_node);
        }
        if (tree_node->right_node!=NULL)
        {
            en_queue_data(queue, tree_node->right_node);
        }

        push_node_data_stack(stack, tree_node);
    }

    while (stack->len > 0)
    {
        b_tree_node *tree_node = pop_data_stack(stack);
        free(tree_node);
    }

    dispose_stack(&stack);
    dispose_que(&queue);

    free(*tree);
    *tree = NULL;
};

void PreOrder(b_tree_node * root_node)
{
    if (root_node == NULL)
    {
        return;
    }

    printf("%d\n", root_node->data);
    PreOrder(root_node->left_node);
    PreOrder(root_node->right_node);
};

void PreOrder2(b_tree* tree)
{
    if (tree->root == NULL)
    {
        return;
    }

    m_stack *stack = init_stack();
    push_node_data_stack(stack, tree->root);

    while (stack->len > 0)
    {
        b_tree_node *tree_node = pop_data_stack(stack);
        printf("%d\n", tree_node->data);

        if (tree_node->right_node != NULL)
        {
            push_node_data_stack(stack, tree_node->right_node);
        }
        if (tree_node->left_node != NULL)
        {
            push_node_data_stack(stack, tree_node->left_node);
        }
    }

    dispose_stack(&stack);
};

void Inorder(b_tree_node * root_node)
{
    if (root_node ==NULL)
    {
        return;
    }

    Inorder(root_node->left_node);
    printf("%d\n", root_node->data);
    Inorder(root_node->right_node);
};

void LastOrder(b_tree_node * root_node)
{
    if (root_node == NULL)
    {
        return;
    }

    LastOrder(root_node->left_node);
    LastOrder(root_node->right_node);
    printf("%d\n", root_node->data);
}

void LevelOrder(b_tree * tree)
{
    if (tree->root == NULL)
    {
        perror("level order, tree root is null");
        return;
    }

    m_queue *queue = init_queue();
    en_queue_data(queue, tree->root);
    
    while (queue->len > 0)
    {
        b_tree_node *tree_node = de_queue_data(queue);
        printf("%d\n", tree_node->data);

        if (tree_node->left_node != NULL)
        {
            en_queue_data(queue, tree_node->left_node);
        }
        if (tree_node->right_node != NULL)
        {
            en_queue_data(queue, tree_node->right_node);
        }
        free(tree_node);
    }

    dispose_que(&queue);
}

测试使用

#include "binary_tree.h"
void TestBinaryTree()
{
    //b_tree* tree = create_b_tree_root(1);
    //b_tree_node *a = append_left_node(tree->root, 2);
    //append_right_node(tree->root, 3);
    ////Inorder(tree->root);
    //LevelOrder(tree);

    int list[] = {9,3,1,2,11,10,12};
    //b_tree *tree = create_b_tree_level(list, array_len(list));    //层序创建二叉树
    //LevelOrder(tree);

    b_tree_bst *bst_tree = create_bst_tree(list, array_len(list));
    destroy_node_data_by_bst(bst_tree, 11);
    destroy_node_data_by_bst(bst_tree, 12);
    destroy_node_data_by_bst(bst_tree, 10);

    Inorder(bst_tree->root);

    dispose_b_tree(&bst_tree);
}

int main()
{
TestBinaryTree();
return 0;
}

C语言实现常用数据结构(一)
二叉排序树在极端情况下(例如所有数据都比根节点大)会退化成链表,为解决这个问题引入了平衡二叉树。平衡二叉树的特点是左右两个子树的高度差不能大于1,所以在插入和删除节点时需要动态调整树结构,平衡二叉树的重点是旋转算法,常见实现方式有AVL树,红黑树等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容