2019-03-04深度学习——从头搭建一个简单的NN-classification

正在学习斯坦福的cs231n课程,该课程使用的是CIFAR-10数据集

该数据集可在管网下载
http://www.cs.toronto.edu/~kriz/cifar.html

下载并解压,得到


image.png

如何导入数据

CIFAR-10数据集由pickle产生,因此也由pickle导入

import pickle
    def load_file(filename):
        with open(filename, 'rb') as fo:
            data = pickle.load(fo, encoding='latin1')
        return data

    filename = 'D:/Download/cifar-10-batches-py/data_batch_1'
    data = load_file(filename)
    print(data.keys())//得到当前文件的一些基本信息

当前文件的一些基本信息
dict_keys(['batch_label', 'labels', 'data', 'filenames'])

NN分类的思想

NN分类并不需要训练,只需要将要判断的图和已有数据进行比较即可

比较时计算目标图与每一个数据图的范数一,范数一最小的数据图所属类别即为目标图类别

关于范数一与范数二
image.png

代码如下

import numpy as np
import pickle
filename = 'xxx'
filename_test = 'xxx'

class NearestNeighbor:
    """docstring for NearestNeighbor"""
    def __init__(self):
        pass

# 导入数据
    def load_file(self, filename):
        with open(filename, 'rb') as fo:
            data = pickle.load(fo, encoding='latin1')
        return data

# 训练模型,NN只是简单的导入即可,X是数据,n*3072,Y是数据标签,n*1
    def train(self, X, y):
        self.Xtr = X
        self.ytr = y

# 使用模型进行预测,X是test集的数据
    def predict(self, X):
        num_test = X.shape[0]# test数据个数
        Ypred = np.zeros(num_test)# 初始化预测结果
        
        for i in range(num_test):
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)# 计算范数一
            min_index = np.argmin(distances)# 寻范数一最小的数据
            Ypred[i] = self.ytr[min_index]# 得到预测结果

        return Ypred

net = NearestNeighbor()

data = net.load_file(filename)
test_batch = net.load_file(filename_test)

net.train(data['data'], data['labels'])
result = net.predict(test_batch['data'])

print(result)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容