可视化学习笔记

Matplotlib绘图模块学习笔记
老师指路->https://www.jianshu.com/u/1f32f227da5f
使用工具:Anaconda-jupyter

一、Matplotlib绘图模块学习笔记

1、折线图

import numpy as np 
import matplotlib.pyplot as plt
%matplotlib inline  #魔法函数-展示图像
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号


X = np.linspace(0, 2*np.pi,100)# 均匀的划分数据
Y = np.sin(X)
Y1 = np.cos(X)

plt.title("Hello World!!")
plt.plot(X,Y)
plt.plot(X,Y1)
#plt.show()
matplot1.png

绘制子图

X = np.linspace(0, 2*np.pi,100)
Y = np.sin(X)
Y1 = np.cos(X)
plt.subplot(211) # 等价于 subplot(2,1,1)
plt.plot(X,Y)

plt.subplot(212)
plt.plot(X,Y1,color = 'r')
matplot2.png

2、柱状图
柱状图一般用来统计一些类型的数量,例如不同产品的销售额。柱状图一般有两种,一个是传统的,一个是叠加的。

data = [5,25,50,20]
plt.bar(range(len(data)),data)
#x=[0,1,2,3]
#plt.bar(x,data)
#四个产品销量情况
matbar1.png

多个柱状图

data = [[5,25,50,20],
        [4,23,51,17],
        [6,22,52,19]]
X = np.arange(4)

plt.bar(X + 0.00, data[0], color = 'b', width = 0.25,label = "A")
plt.bar(X + 0.25, data[1], color = 'g', width = 0.25,label = "B")
plt.bar(X + 0.50, data[2], color = 'y', width = 0.25,label = "C")

# 显示上面设置的 lable
plt.legend()
#四个季度、三个产品销量
matbars.png

叠加柱状图

data = [[5,25,50,20],
        [4,23,51,17],
        [6,22,52,19]]
X = np.arange(4)

plt.bar(X, data[0], color = 'b', width = 0.25)
plt.bar(X, data[1], color = 'g', width = 0.25,bottom = data[0])
plt.bar(X, data[2], color = 'y', width = 0.25,bottom = np.array(data[0]) + np.array(data[1]))

plt.show()
matbarb.png

3、散点图
散点图用来衡量两个连续变量之间的相关性

N = 50
x = np.random.rand(N)
y = np.random.rand(N)

plt.scatter(x, y)
mats1.png

颜色大小区分

N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.randn(N) # 颜色可以用数值表示
area = np.pi * (15 * np.random.rand(N))**2  #  调整大小

plt.scatter(x, y, c=colors, alpha=0.5, s = area)
mats2.png

4、直方图
直方图是用来衡量连续变量的概率分布的。在构建直方图之前,我们需要先定义好bin(值的范围),先把连续值划分成不同等份,然后计算每一份里面数据的数量。

#举例,绘制一个班级身高分布,150-170有多少人,170-180多少人,绘制频率分布
a = np.random.rand(100)
plt.hist(a,bins= 20)
plt.ylim(0,15)
mathist.png

5、盒图
boxlot用于表达连续特征的百分位数分布。统计学上经常被用于检测单变量的异常值,或者用于检查离散特征和连续特征的关系


boxplot1.png
x = np.random.randint(20,100,size = (30,3))
plt.boxplot(x)
plt.ylim(0,120)
# 在x轴的什么位置填一个 label,我们这里制定在 1,2,3 位置,写上 A,B,C
plt.xticks([1,2,3],['A','B','C']) 

plt.hlines(y = np.median(x,axis = 0)[0] ,xmin =0,xmax=3)
boxplot2.png

Pandas直接绘图

df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
# 绘制柱状图
df.plot.bar()
pdbar.png

pyecharts绘图

可鼠标点击互动
pyecharts 绘图的五个步骤:

1、创建图形对象
2、添加绘图数据
3、配置系列参数
4、配置全局参数
5、渲染图片

from pyecharts.charts import Bar
from pyecharts import options as opts

# l.创建一个柱形图对象
bar = Bar()

# 2.开始添加各个轴的数据
bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])

# 3.配置系列参数:对标签、线型等的一些设置

# 4.配置全局参数:对x、y轴、提示框等参数配置
bar.set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))

# 5.渲染
# 生成本地 HTML 文件,默认会在当前目录生成 render.html 文件,也可以传入路径参数,如 bar.render("mycharts.html")
# bar.render()

# notebook 渲染
bar.render_notebook()
pyecharts.png

词云图

from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType


words = [
    ("Sam S Club", 10000),
    ("Macys", 6181),
    ("Amy Schumer", 4386),
    ("Jurassic World", 4055),
    ("Charter Communications", 2467),
    ("Chick Fil A", 2244),
    ("Planet Fitness", 1868),
    ("Pitch Perfect", 1484),
    ("Express", 1112),
    ("Home", 865),
    ("Johnny Depp", 847),
    ("Lena Dunham", 582),
    ("Lewis Hamilton", 555),
    ("KXAN", 550),
    ("Mary Ellen Mark", 462),
    ("Farrah Abraham", 366),
    ("Rita Ora", 360),
    ("Serena Williams", 282),
    ("NCAA baseball tournament", 273),
    ("Point Break", 265),
]


wordcloud = (
    WordCloud()
    .add("", words, word_size_range=[20, 100])
    .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-基本示例"))
)


wordcloud.render_notebook()

词云图
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342