MIMO系统Vblast检测算法误码率matlab仿真,对比了zf,mmse,mmse-sic,zf-sic,osic

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

移动通信系统的性能在很大程度上决定于无线信道的特性。单发单收系统无线信道的特性已经研究得很透彻,针对其各通信标准所采用的载频、带宽、环境等都有权威机构给出实测的信道模型。对于多天线信道而言,许多单天线的概念都被继承了下来,如路径传播损耗、阴影衰落、多径衰落损耗、长期衰落、短期衰落、相干时间、相干带宽、频率选择性衰落、平坦衰落等, 所采用的信道模型也基本都是单天线情况下的一些拓展。本实验采用独立的慢衰落环境中的多输入多输出 MIMO 系统,假设发送端的天线数目为Mt,接收端端的天线数目为 Mr。用hij表示从第 j 个发射天线到第 i 个接收天线的信道增益。接收天线i处的噪声为ni,j=1,…, Mt ,i=1,…, Mr ;则第i个接收天线接收信号为:



2.1zf

ZF均衡算法是一种根据峰值失真准则推导而来的线性均衡算法。将OFDM系统接收端的频域输出方程组用矩阵表示为

Y=HX+W

其中W为加性高斯白噪声。为了得到发送端的发送信号X,最简单的实现方法是将Y乘以矩阵的 逆,即:



ZF算法有个很大的缺点,没有对噪声进行消除,反而会放大噪声,当信噪比比较低时,性能会非常不好。


2.2mmse

mimo系统通过在不同天线上发送相互独立的数据流显著提高系统的频谱效率,接收端可以采用线性或者非线性的方式进行mimo信号的检测。MMSE能够最大化检测后的SINR(Signal to Interference plus Noise Ratio,干扰信噪比,即期望信号与无用噪声的比值)。即,MMSE检测是期望最小化噪声干扰。



2.3osic

一般情况下,线性检测方法的性能比非线性检测方法要差,但是线性检测方法的硬件实现复杂度低。通过排序的连续干扰消除(Ordered Successive Interference Cancellation,OSIC)方法可以改善线性检测方法的性能,而不会显著提高复杂度。它采用一组线性接收机,每个接收机检测并行数据流中的一个流,在每个阶段能够成功的从接收信号中删除检测出的信号成分。即在每个阶段将检测出来的信号从接收信号中减去,使得用于后续阶段的剩余信号具有更少的干扰。如下图给出4个空间数据流的OSIC信号检测过程。





3.MATLAB核心程序

for i=1:length (SNRs)

SNR(i) = 10^(SNRs(i)/10);

sigma  = 1/sqrt(SNR(i));

for times=1:Meantimes

[i,times]

%信源

........................................................


%ZF

det_zf = G*R(:, ijk);

dec1((ijk-1)*tx+[1:tx],:) = func_demod(det_zf.',index).';


%MMSE

det_MMSE=G1*R(:, ijk);

dec2((ijk-1)*tx+[1:tx],:) = func_demod(det_MMSE.',index).';

% MMSE-SIC

dec3((ijk-1)*tx+[1:tx],:) = func_mmsesic (tx,G1,r, h_mmse_sic,rx,sigma,index);       

% ZF_SIC

dec4((ijk-1)*tx+[1:tx],:) = func_zfsic(tx,G,r_zf_sic,h_zf_sic,rx,index);

% OSIC

dec5((ijk-1)*tx+[1:tx],:) = func_osic(tx,r_osic, h_osic,p0,g1,index,sigma);


end     

NumErr1(i,times)=sum(abs(dec1.'~=signals));    

NumErr2(i,times)=sum(abs(dec2.'~=signals));

NumErr3(i,times)=sum(abs(dec3.'~=signals));

NumErr4(i,times)=sum(abs(dec4.'~=signals));

NumErr5(i,times)=sum(abs(dec5.'~=signals));

end

end

Ber1=mean(NumErr1.')/lens;                      

Ber2=mean(NumErr2.')/lens;

Ber3=mean(NumErr3.')/lens;

Ber4=mean(NumErr4.')/lens;

Ber5=mean(NumErr5.')/lens;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容